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We describe and evaluate a factor rotation algorithm, iterated target rotation (ITR). Whereas
target rotation (Browne, 2001) requires a user to specify a target matrix a priori based on
theory or prior research, ITR begins with a standard analytic factor rotation (i.e., an empirically
informed target) followed by an iterative search procedure to update the target matrix. In Study
1, Monte Carlo simulations were conducted to evaluate the performance of ITR relative to
analytic rotations from the Crawford-Ferguson family with population factor structures varying
in complexity. Simulation results: (a) suggested that ITR analyses will be particularly useful
when evaluating data with complex structures (i.e., multiple cross-loadings) and (b) showed
that the rotation method used to define an initial target matrix did not materially affect the
accuracy of the various ITRs. In Study 2, we: (a) demonstrated the application of ITR as a way
to determine empirically informed priors in a Bayesian confirmatory factor analysis (BCFA;
Muthén & Asparouhov, 2012) of a rater-report alexithymia measure (Haviland, Warren, &
Riggs, 2000) and (b) highlighted some of the challenges when specifying empirically based
priors and assessing item and overall model fit.

Exploratory factor analysis (EFA) plays a crucial role in scale
development and revision (Floyd & Widaman, 1995; Reise,
Waller, & Comrey, 2000), theory generation and development
(Preacher & MacCallum, 2003), comparison of data struc-
tures across populations (Caprara et al., 2000), data reduction
(Fabrigar et al., 1999; Ford, MacCallum, & Tait, 1986), and
preparation for confirmatory factor analysis (CFA; Gerbing
& Hamilton, 1996; Gorsuch, 1997; van Prooijen & van der
Kloot, 2001; Thompson, 2004). In all of these applications,
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the first step in EFA is to extract m orthogonal dimensions,
where m is determined by the researcher. These unrotated
dimensions, typically, are not psychologically interpretable,
which necessitates rotation of the extracted factors to a more
meaningful criterion.

In the present study, we propose, evaluate, and apply an
automated iterative version of a rotation technique, iterated
target rotation (ITR), originally suggested in Browne (2001).
In a partially specified target rotation (Browne, 2001), a
researcher must define a target pattern matrix of specified
(usually zeros) and unspecified (?) loadings a priori either
according to theory or prior data analysis. Although one sub-
sequently can decide whether to modify the target in light of
the results, as Browne (2001) noted, no formal mechanisms
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for doing so have been evaluated empirically. In ITR, as
proposed here, one begins with a standard factor rotation
method (e.g., Quartimax), defines a partially specified, em-
pirically informed target matrix based on that rotation, and
uses an iterative search procedure to update the target matrix.

ITR is expected to be most useful when data have a
complex structure, that is, when commonly used analytic
rotations are most problematic. Sass and Schmitt (2010),
for example, observed positive bias in factor correlation es-
timates in data with complex structure using Geomin and
Quartimin rotations. Moreover, ITR results can be used to
guide the specification of a set of empirically based priors
required for Bayesian confirmatory factor analysis (BCFA;
Muthén & Asparouhov, 2012; see also Fong & Ho, 2014, for
a recent application). In what follows, the logic underlying
partially specified target rotations (Browne, 2001) and their
iterated counterparts are reviewed after a brief overview of
factor rotation. The rotation methods described below are
important to review here because subsequently they were
used to: (a) suggest an initial target matrix and (b) judge the
relative accuracy of ITR versus standard analytic rotation.

Analytic Factor Rotation and Simple Structure

The ultimate goal of factor rotation is to identify interpretable
and substantively meaningful dimensions that account for
and explain the relationships among test items. Due to the
indeterminacy of a factor solution, there are infinite ways
to transform an initial factor pattern matrix (�) without
changing the uniqueness (diagonal elements of �) or the
reproduced correlation matrix (�). For this reason, the most
commonly applied analytic factor rotations aim to meet one
or more of the simple structure criteria listed in Thurstone
(1947).

As Sass and Schmitt (2010) pointed out in their review
of rotation criteria, most researchers mistakenly assume that
the only important choice in selecting a criterion is whether it
allows factors to correlate (oblique vs. orthogonal rotation).
In fact, as Sass and Schmitt demonstrated, the choice of ro-
tation may not be entirely straightforward, because oblique
criteria themselves can vary substantially in what they em-
phasize. Some criteria, for example, attempt to get as close
to independent cluster structure (i.e., a pattern where each
variable loads saliently on one factor and near zero on any
other factor) as possible, whereas others are more likely to
identify salient cross-loadings.

Specifically, Sass and Schmitt (2010) described the
Crawford-Ferguson (CF) family of factor rotations [(Equa-
tion (1)] that vary in how much emphasis the rotation places
on minimizing complexity in the variables (rows), as opposed
to the factors (columns), depending on the value of a constant
(k).

f (�) = (1 − k)
p∑

i=1

m∑

j=1

m∑

l �=j,l=1
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ij λ

2
il
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Where, p = the number of variables, m = the number of
factors, k = the user-defined constant determining how much
emphasis the criterion function places on column (vs. row)
complexities, λij = the factor loading corresponding to the
ith variable (row) in the jth factor (column), and � = the
factor loading matrix.

Quartimin (k = 0), for example, maximizes row simplic-
ity and, thus, always will recover a population structure that
contains perfect independent cluster structure. At the other
extreme, Facparsim (k = 1) rotation minimizes the com-
plexity of the factors (columns) and ignores the complexity
of the variables (rows). Facparsim is unique among rotation
criteria, because it places no emphasis on assigning variables
(rows) to factors (columns) and assumes that the factors each
account for the same amount of variance (Crawford & Fer-
guson, 1970). Browne (2001), therefore, considered the Fac-
parsim criterion to be of theoretical interest only. Finally, the
Parsimax rotation falls directly between the Quartimin and
Facparsim rotations; in Parsimax, the term k is replaced by
(m – 1)/(p + m – 2), thus, guaranteeing rows (p) and columns
(m) have equal weight.1 Parsimax was created (Crawford &
Ferguson, 1970) for the specific purpose of equalizing the
influences of the first and second terms in Equation (1).

Iterated Target Rotation

Target rotations represent an alternative to the CF family of
analytic simple structure rotations described above (Browne,
2001). In a target or Procrustes rotation, all elements of a
factor loading matrix are specified (i.e., assigned numeric
values; typically 1s for salient loadings and 0s otherwise),
and then a complexity function is minimized that considers
all elements of the loading matrix. Such rotations have a long
history in the psychometric literature (Henricksen & White,
1964; McArdle & Cattell, 1994). Over 40 years ago, for
example, Guilford and Hoepfner (1971) used target rotations
in an attempt to validate the structure of intellect (SOI) model,
a landmark study we will comment on in more detail in the
discussion.

The idea of rotating to a partially specified target matrix
began with Tucker (1944) and was expanded upon by Gru-
vaeus (1970), Browne, (1972a, 1972b), and ten Berge (1977).
In a partially specified target rotation, a researcher needs to
specify a pattern of specified loadings (typically zeros for
non-salient loadings) and unspecified elements (? indicating
that there are no empirical assumptions regarding the value
of loadings) a priori based on theory or previous studies. The
unspecified elements are ignored when minimizing the com-
plexity function and, thus, have no effect on the rotation [see

1The reason k does not equal .50 is that the number of rows is not the same
as the number of columns; thus, k has to adjust for m �= p when weighting
the sum.
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Equation (2) below]. The initially extracted solution then is
rotated by minimizing the rotation criterion function in Equa-
tion (2), or equivalently, minimizing the difference between
the specified elements (typically zeros) of the target matrix
and the rotated elements. Specifically,

f (L) =
m∑

j=1

∑

i∈Ij

(λij − bij )2 (2)

Where, bij = the element corresponding to the ith row in the
jth column in the target matrix;

f (L) = the complexity function that needs to be mini-
mized; m = the number of factors; λij = the factor loading
corresponding to the ith variable (row) in the jth factor (col-
umn); and iεIj indicates that only the specified elements (non
?) of the target matrix are used.

Browne (2001, p. 125) originated the idea of iterating par-
tially specified target matrices based on experimenter judg-
ment, suggesting that after an initial target rotation, “The
target may be changed . . . This procedure may be repeated
until the investigator is satisfied with the outcome.”2

In the present research, we propose two modifications.
First, rather than starting with a theoretically chosen, partially
specified target pattern, we begin with a standard analytic
rotation method from the CF family. Second, using a factor
loading cut-off criterion (e.g., rotated loading = .20), a new
target matrix is formed by specifying all loadings below the
cutoff as specified zeros and all values above the cut-off as
non-specified. A new rotation then is performed based on
this new target matrix, and the results again are evaluated in
regard to the criterion value. When the target matrix does not
change between iterations, the process stops.

In Table 1, we provide an example of ITR using a cut-off
criterion of .15 in data with a very complex population struc-
ture (i.e., many items with nontrivial cross-loadings). In this
example, the initial target matrix was purely random and not
based on any preliminary analytic rotation. Observe that even
using a random starting target matrix, where the probability
of being a specified zero was .50, the ITR solution quickly
converged to the correct population structure with RMSE of
.001. In contrast, Quartimin, Parsimax, and Facparsim did
not recover this pattern perfectly and yielded RMSE of .193,
.140, and .137, respectively. As illustrated in Table 1, the
results of ITR were data-driven, that is, no CF-family com-
plexity function was minimized, and, other than selecting a
cut-off criterion, no researcher judgments were made.

In what follows, we conducted two studies to demonstrate
the potential utility of ITR. In Study 1, we performed a brief
Monte Carlo demonstration to evaluate the feasibility and

2Browne’s (2001) suggestion is similar to the hand rotations factor ana-
lytic researchers conducted between 1935 and 1970 (for lack of computer
programs). One would do an original hand rotation of the unrotated factor
matrix, inspect it to see what it looked like, and then engage in another
hand rotation to “clean up” the solution or reorient the factors. This would
continue until the researcher was satisfied with the result.

potential strengths of the ITR method relative to CF rotations.
In Study 2, we demonstrated the role that ITR can play in
deriving prior distributions for use in a BCFA (Muthén &
Asparouhov, 2012).

STUDY 1: PERFORMANCE OF ITR RELATIVE
TO CF ANALYTIC ROTATIONS

The following simulation was designed to explore the rela-
tive advantage of ITR over CF rotations as a function of data
complexity (i.e., departure from perfect independent cluster
structure). Because ITR proceeds through multiple cycles of
adaptation to the data, we expected ITR to recover a true
population factor pattern better than any single, “one-shot”
analytic rotation where k may or may not match the data
complexity. The critical question in Study 1, thus, was not
whether ITR is “better,” but rather how much better and how
ITR performance was affected by data complexity. We also
examined the degree to which the starting analytic rotation
(i.e., the k value in CF rotations) affected the accuracy of the
ITR results. In other words, we asked, does the initial ana-
lytic rotation used to suggest the target make any important
difference on ITR results?

Simulation Design

The true population factor loading pattern (�) was specified
to be 20 (items) by 4 (dimensions), and each factor was
marked by five items with loadings varying between .50 and
.60. The factors were allowed to correlate with the elements
of � varied uniformly between .10 and .40, changing with
every simulation.3

Three conditions were simulated to represent data that
varied from mild to severe violations of independent cluster
structure. For each factor, two of the five items per factor were
specified to have cross-loadings of zero, so that the factors
were always identified. Then, for each of the 36 remaining
cells with zero loadings (three items by three possible cross-
loadings, by four factors), we generated a random number
from a uniform distribution ranging from 0 to 1. If that ran-
dom number was below an a priori determined cut-off, then
a loading of .25 was assigned to that cell. The cut-off values
were .11 (4/36), .33 (12/36), and .66 (24/36), for Conditions
A, B, and C, respectively. These cut-off values produced ma-
trices with the expected number of salient cross-loadings of
4, 12, and 24, respectively.

Once the true population factor pattern matrix was speci-
fied, a population correlation matrix (�) was generated using
the common formula � = ���’ + �, and the sim.structure

3Preliminary results suggested that the strength of the correlations among
the factors had little to no influence on the relative abilities of the rotations
to approximate the population factor structure across conditions, and, thus,
they were not evaluated further.
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TABLE 1
Example of Perfect Target Iteration Convergence on a Complex Population Structure, Starting From a Random Target Matrix

Population Structure Random Target Target Rotation 0 Target 1

Item F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4

1 .50 .40 .30 0 0 0 0 .38 .42 .25 ? 0 ? ?
2 .50 .40 ? 0 0 0 .66 .14 ? ? 0 0
3 .50 ? ? 0 0 .48 –.20 .14 ? 0 ? 0
4 .50 0 0 ? 0 .48 –.20 .14 ? 0 ? 0
5 .50 .20 .20 ? ? ? 0 .41 .27 .22 ? 0 ? ?
6 .50 .40 ? ? ? ? .10 .52 –.30 .37 0 ? 0 ?
7 .20 .50 .40 ? ? ? ? .43 .57 .22 –.23 ? ? ? 0
8 .20 .50 0 0 0 0 .42 .35 –.14 ? ? 0 0
9 .50 .40 0 ? ? ? .10 .52 –.30 .37 0 ? 0 ?
10 .50 .30 0 ? 0 0 .14 .49 –.27 .25 ? ? 0 ?
11 .20 .40 .50 ? ? ? ? .38 .54 .35 –.25 ? ? ? 0
12 .20 .50 .40 0 ? ? 0 .29 .41 .28 0 ? ? ?
13 .30 .50 .30 0 ? ? 0 .61 .26 0 ? ? 0
14 .50 0 0 ? 0 .28 .45 –.21 0 ? ? 0
15 .40 .50 .20 ? ? 0 ? .13 .67 .24 ? ? ? 0
16 .30 .40 .50 0 0 0 0 .13 .22 .32 .45 ? ? ? ?
17 .30 .50 0 0 0 ? .12 .61 ? 0 0 ?
18 .50 ? 0 ? ? –.16 .11 –.13 .57 0 ? 0 ?
19 .40 .50 0 ? 0 ? –.16 .34 .23 .41 0 ? ? ?
20 .30 .30 .30 .50 ? 0 0 ? .27 .41 .11 .43 ? ? 0 ?

Target Rotation 1 Target 2 Target Rotation 2 Target 3

Item F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4

1 .47 .34 .32 ? 0 ? ? .50 .42 .29 ? 0 ? ?
2 .53 .39 ? ? 0 0 .49 .41 ? ? 0 0
3 .51 ? 0 0 0 .49 ? 0 0 0
4 .51 ? 0 0 0 .49 ? 0 0 0
5 .49 .14 .24 ? 0 ? ? .50 .21 .20 ? 0 ? ?
6 .55 .33 0 ? 0 ? .52 .37 0 ? 0 ?
7 .21 .55 .39 ? ? ? 0 .19 .51 .41 ? ? ? 0
8 .23 .50 ? ? 0 0 .19 .51 ? ? 0 0
9 .55 .33 0 ? 0 ? .52 .37 0 ? 0 ?
10 .54 .23 0 ? 0 ? .51 .27 0 ? 0 ?
11 .20 .46 .49 ? ? ? 0 .19 .40 .51 ? ? ? 0
12 .16 .47 .37 ? 0 ? ? .20 .52 .36 ? 0 ? ?
13 .39 .49 .20 0 ? ? ? .31 .52 .24 0 ? ? ?
14 .52 0 0 ? 0 .52 0 0 ? 0
15 .49 .50 0 ? ? 0 .41 .52 .13 0 ? ? ?
16 .26 .35 .49 ? 0 ? ? .30 .42 .47 ? 0 ? ?
17 .28 .54 ? 0 0 ? .30 .51 ? 0 0 ?
18 .50 0 0 0 ? .49 0 0 0 ?
19 .38 .46 0 0 ? ? .42 .46 0 0 ? ?
20 .28 .37 .24 .46 ? ? ? ? .30 .31 .31 .47 ? ? ? ?

Note. Converged solution (Target rotation 3, not shown) is identical to population structure (RMSE < .0001); Population inter-factor correlations (phi) set
to .30; loadings with absolute value < .10 omitted; Random target generated such that each element had a 50% binary probability (0,1); Target rotation 0 is
based on random target.

command in the psych (Revelle, 2012) R library (R Devel-
opment Core Team, 2012) was used to simulate raw data
matrices. For each condition, 1,000 simulated data matrices
were created for each of three sample sizes: N = 250, N =
500, and N = 1,000.

For each dataset, maximum likelihood factor extraction
was used, and the factanal function in the stats library in R
performed seven CF rotations: k = 0 (Quartimin), m – 1/(p +
m – 2) (Parsimax) .20, .40, .60, .80, and 1(Facparsim). These

seven rotations then formed the basis for specifying a set of
specified (0) and unspecified (?) elements for an initial target
matrix. That is, each CF rotation (Quartimin, and so forth)
was used to create a first target matrix for its own series of
iterated targets.

To convert a factor solution to a partially specified target
matrix, a threshold value for deciding whether a loading is
“substantial” (and, therefore, should not be part of the rota-
tion criterion function) must be specified. Herein, we used a
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cut-off value of .10 for all simulations. Thus, if the estimated
loading was .10 or greater, it was unspecified (“?”) and if less
than .10 it was specified to be zero (“0”). A target rotation
then was performed using the comprehensive exploratory
factor analysis program (CEFA;4Browne, Cudeck, Tateneni,
& Mels, 2008), and the resulting solution then was used to
create a new target matrix with the same rule as was applied
in the previous target creation. Subsequent iterations contin-
ued until the target matrix produced was the same as one of
the previous target matrices. Such a solution was said to have
“converged.” Preliminary simulations suggested that seven
iterations was the maximum likely to be useful in the present
study, so the R program stopped after seven iterations.

Finally, the seven CF rotations and the iterated-target ro-
tation were compared in terms of the RMSE between the true
population structure and the estimated structure. To ensure
that the RMSEs in the present study were calculated using
the same factor order for both the population and exploratory
solutions, they were calculated using every possible reorder-
ing of the exploratory solution, and then the lowest RMSE
was taken to be the one corresponding to the most congruent
reordering.

Simulation Results

Although we planned to provide a detailed description of ITR
convergence rates, they were so high as to prohibit meaning-
ful analysis. That is, almost all iterated target solutions con-
verged before reaching the maximum iterations, and there
were no meaningful patterns (hypothesized or discovered)
in convergence rates across conditions. Preliminary analysis
suggested, however, that the number of iterations required
for convergence increases as sample size becomes small.

Table 2 displays the results of the 63 simulated condi-
tions from above. The table shows the median RMSE of
the rotated factor solutions from their corresponding popu-
lation structures. “Initial” solutions were the CF rotations,
and “converged” solutions were the iterated target rotations
using the indicated CF rotation as a starting point (first target
matrix). Four important summary points can be drawn from
Table 2. First, as expected, the ITR method always outper-
formed the initial CF rotation. Second, and more importantly,
although all solutions were worse under the most complex
data structure, the relative advantage of ITR over any CF
rotation increased as a function of data complexity. Third,
the starting rotation had very little influence on the accuracy
of the final ITR solution. Finally, more accurate results were
obtained using any method as sample size increased.

4Rotation to a partially specified target matrix programs also are avail-
able in the R GPArotation package (Bernaards & Jennrich, 2008); software
available from Lorenzo-Seva and Ferrando (2006), and Mplus (Muthén &
Muthén, 2012).

STUDY 2: APPLICATION OF ITR IN BCFA

In Study 2, we demonstrated the application of ITR as a
tool for deriving prior distributions for a BCFA (Muthén
& Asparouhov, 2012) of a rater-report alexithymia mea-
sure (Haviland, Warren, & Riggs, 2000). Muthén and As-
parouhov (2012) presented a flexible method for handling
cross-loadings that are theorized to be zero (or very near
zero) via the Bayesian estimation framework. Within this
framework, cross-loadings hypothesized to be near zero do
not need to be fixed exactly to zero, but rather fixed values
of zero can be replaced with approximate zeros. These ap-
proximate zeros are defined through the use of Bayesian prior
distributions that are placed on the factor loadings. Typically,
in BCFA, a researcher uses theory or prior analyses to de-
fine an independent cluster pattern. Then, diffuse priors are
specified for the factor loadings for items expected to load on
a particular factor; the diffuse priors essentially specify the
loadings to be freely estimated. Informative priors, centered
at zero and with σ = .10 to mimic an approximate zero with-
out fixing parameters in the model, are specified for all other
cross loadings for items not expected to load onto a factor.
Specifying diffuse priors for factor loadings using default
settings in programs such as Mplus 7.11 (Muthén & Muthén,
1998–2012), however, may not be optimal for some datasets
as we show below.

On its face, ITR appears to be an excellent exploratory tool
to use in conjunction with BCFA. The results of an ITR can be
used to: (a) alert the researcher to items with salient loadings
on multiple factors and to adjust the model accordingly (as
opposed to fitting the independent cluster structure model
and then finding problems in fit post hoc) and (b) suggest
empirically informed means and standard deviations for the
prior distribution for all elements of the loading and factor
intercorrelation matrices.

For our example, we used clinical and people-in-general
data (N = 1,485) from the Observer Alexithymia Scale (OAS;
Haviland, Warren, & Riggs, 2000), a 33-item observer scale
that measures expressions of emotion regulation deficits.
Items are rated on a 4-point scale ranging from 0 (never,
not at all like the person) to 3 (all of the time, completely like
the person). Item content, written in lay terms, is from the
California Q-set alexithymia prototype (Haviland & Reise,
1996). Correlated traits modeling suggests a five-factor struc-
ture, distant (unskilled in interpersonal matters and relation-
ships), uninsightful (lacking good stress tolerance and in-
sight and self-understanding), somatizing (excessive health
worries), Humorless (colorless and uninteresting), and rigid
(inflexibility and excessive self-control) (Haviland, Warren,
& Riggs, 2000), whereas bifactor modeling shows a rela-
tively strong general factor (alexithymia) (Reise, Moore, &
Haviland, 2010).

For purposes of simplicity and clarity, we used 19 items
(six distant, six uninsightful, three humorless, and four rigid).
We dropped all somatizing items (the subscale with the
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TABLE 2
Median Root Mean Square Error (RMSE) for Each of the Seven Initial Crawfer Rotations and Their Converged Iterated-Targets

Solutions (threshold = .10) for Three Sample Sizes

N = 1000

Secondary Loadings = 4 Secondary Loadings = 12 Secondary Loadings = 24

Initial Rotation Initial Converged Initial Converged Initial Converged

k = 0 (Quartimin) .040 .032 .053 .032 .073 .031
k = .136 (Parsimax) .040 .032 .045 .032 .053 .031
k = .2 .041 .032 .044 .032 .051 .031
k = .4 .043 .032 .044 .032 .048 .031
k = .6 .043 .032 .044 .032 .046 .031
k = .8 .044 .032 .044 .032 .046 .031
k = 1 (Facparsim) .044 .032 .045 .032 .045 .031

N = 500
Secondary Loadings = 4 Secondary Loadings = 12 Secondary Loadings = 24

Initial Rotation Initial Converged Initial Converged Initial Converged
k = 0 (Quartimin) .053 .048 .064 .046 .079 .047
k = .136 (Parsimax) .052 .048 .056 .046 .061 .045
k = .2 .052 .048 .055 .046 .059 .044
k = .4 .054 .048 .055 .046 .057 .044
k = .6 .055 .048 .055 .046 .056 .044
k = .8 .055 .048 .055 .046 .055 .044
k = 1 (Facparsim) .056 .048 .055 .046 .055 .044

N = 250
Secondary Loadings = 4 Secondary Loadings = 12 Secondary Loadings = 24

Initial Rotation Initial Converged Initial Converged Initial Converged
k = 0 (Quartimin) .072 .071 .081 .071 .093 .074
k = .136 (Parsimax) .071 .071 .073 .070 .076 .069
k = .2 .071 .071 .073 .070 .075 .068
k = .4 .073 .071 .073 .070 .073 .068
k = .6 .074 .071 .073 .070 .072 .068
k = .8 .075 .071 .073 .070 .071 .068
k = 1 (Facparsim) .075 .071 .073 .070 .071 .068

Note. Simulations = 1000; Loadings < .1 were converted to zeros in the target matrix; Loadings > .1 were converted to “?” (unknowns) in the target matrix.

weakest relationships with OAS total and subscale scores
as well as with external correlates). We also dropped eight
redundant items and the item, “likes to touch or be touched,”
the one skipped most often by raters, particularly clinicians.
The OAS is an especially good choice for the present ex-
amples; the Bayesian approach can account for the demon-
strated salient cross-loadings, thus, eliminating the need to
parcel (Haviland, Warren, & Riggs, 2000) or to condemn the
scale because an item-level analysis fails to meet entirely
arbitrary CFA “fit” standards (Meganck, Vanheule, Desmet,
& Inslegers, 2010).

ITR of the OAS

The total sample (N = 1,485) was randomly split into bins
to create exploratory (N = 1,000) and confirmatory (N =
485) samples. We decided to create an approximate 2/3 split
so that the exploratory analyses used to define prior distribu-
tions would be as accurate as possible and allow a reasonable
sample size for final formal model testing. Table 3 displays
the item content for this 19-item, 4-factor version of the

OAS; in theory, Items 1–6 are distant markers, Items 7–12
are uninsightful markers, Items 13–15 are humorless mark-
ers, and 16–19 are rigid markers. For illustrative purposes, in
Table 4, we show the mean- and variance-adjusted weighted
least squares (WLSMV in Mplus) factor results for the ex-
ploratory sample using CF rotations with k = 0 (Quartimin),
.136 (Parsimax), and 1 (Facparsim), respectively.

Several important findings stand out in this table. First,
regardless of rotation, several items have loadings on a di-
mension other than their theorized dimension (i.e., salient
cross-loadings). In fact, at least two items appear to belong
primarily to a dimension other than their theorized dimen-
sion. Experienced researchers will recognize immediately
that these cross-loadings would cause problems in “fit” if an
independent cluster structure CFA model were to be spec-
ified based on prior theory/analyses. Second, although the
rotations provided mostly the same substantive message,
more salient cross-loadings were derived with the Facpar-
sim solution. Moreover, observe that as k increases, primary
loadings tended to be larger, and factors were estimated to
be more correlated (see also Sass & Schmitt, 2010, for their
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TABLE 3
OAS Subscales and Items: Theoretical Factors With CF Loadings/Secondary Loadings (Facparsim, k = 1)

Factors

Distant
1. Is a warm person (secondary loading on humorless)
2. Has compassion (secondary loading on humorless)
3. Is good at relationships (secondary loadings on uninsightful and humorless)
4. Likes to explore his or her feelings (secondary loading on rigid)
5. Is imaginative; creative (secondary loading with higher loading on humorless)
6. Likes to have close friends (secondary loadings on humorless and rigid)

Uninsightful
7. Falls apart when things are really tough
8. Becomes frustrated in the face of uncertainty
9. Has strong emotions that he or she cannot explain
10. Seems to lack a sense of purpose (secondary loading on distant)
11. Has trouble finding the right words to describe his or her feelings (secondary loadings on distant and rigid)
12. Understands his or her needs very well (secondary loading with higher loading on distant)

Humorless
13. Has a good sense of humor
14. Is playful
15. Is colorless; uninteresting (secondary loading with higher loading on rigid)

Rigid
16. Is too self-controlled
17. Is stiff; rigid
18. Sees things only as black or white
19. Puts off enjoying the good things in life; even when it is not necessary to do so

Note. Items with secondary loadings in italic type.

TABLE 4
CF Rotations of the 19-Item OAS Using k = 0 (Quartimin), k = .136 (Parsimax), and k = 1 (Facparsim)

k = 0 Quartimin k = .136 Parsimax k = 1 Facparsim

Factor Loadings
Item D U H R D U H R D U H R
1 .76 .66 .28 .64 .32
2 .78 .69 .23 .66 .26
3 .65 .24 .57 .26 .55 .25 .23
4 .63 .56 .54 .20
5 .31 .37 .24 .43 .23 .44
6 .44 .20 .37 .27 .22 .35 .30 .23
7 .82 .80 .79
8 .71 .69 .68
9 .62 .60 .59
10 .35 .46 .31 .46 .31 .45
11 .26 .39 –.24 .24 .38 .21 .23 .37 .22
12 .44 .32 .39 .33 .37 .32
13 .78 .82 .82
14 .68 .73 .73
15 .26 .37 .32 .38 .34 .40
16 .75 .74 .73
17 .60 .62 .62
18 .21 .53 .55 .55
19 .52 .51 .52

Factor Correlations (phi matrices)
D U H R D U H R D U H R

D — — —
U .34 — .24 — .21 —
H .55 .31 — .46 .26 — .42 .20 —
R .38 .37 .47 — .29 .32 .46 — .26 .29 .42 —

Note. Loadings less than .20 not shown. D is distant, U is uninsightful, H is humorless, and R is rigid.
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TABLE 5
Initial Target Matrix Based on Theory and Initial Target

Rotation Results

Item D U H R D U H R

1 ? .77 .05 .14 –.01
2 ? .79 .03 .09 –.06
3 ? .60 .31 .08 –.04
4 ? .63 –.11 –.12 .15
5 ? .35 –.05 .35 .13
6 ? .47 –.04 .18 .18
7 ? −.14 .87 .16 −.10
8 ? −.24 .75 .11 .09
9 ? −.09 .67 −.13 .13
10 ? .26 .52 −.02 −.08
11 ? .16 .44 −.22 .15
12 ? .37 .38 .00 −.04
13 ? .14 .09 .76 .00
14 ? .19 .00 .66 .13
15 ? .18 .13 .26 .35
16 ? −.13 −.05 .08 .76
17 ? .18 .11 .09 .59
18 ? .17 .12 −.10 .53
19 ? −.09 .07 .16 .52

Note. Loadings > = .20 shown in bold. D is distant, U is uninsightful,
H is humorless, and R is rigid.

commentary on factor correlation estimation in the CF family
of rotation). Of course, these rotations were mathematically
equivalent and had the same fit (CFI = .966, RMSEA =
.067, and SRMR = .035), but each solution, nevertheless,
provided a somewhat different picture of the structure of the
OAS.

For the sake of illustration, instead of using one of the CF
rotations shown in Table 4 to suggest an initial target matrix,
in this application, we started with the theoretical structure
that has been described in the literature. Thus, the initial 19
× 4 target matrix placed a ? in the pattern matrix where
each item was expected to have its primary loading and 0
everywhere else. Setting the number of factors to 4, an initial
unrotated factor pattern was extracted using WLSMV and
then rotated using the initial target. The results are shown in
Table 5.

We then elected to use a .20 cut-off value for updating
the target matrix based on these results. Thus, if the rotated
solution had a loading of .20 or above, it was unspecified
(i.e., coded as a ? in the target matrix), and below .20 it was a
specified zero. The cut-off of .20 was chosen for two reasons:
(a) loadings above this value would fall out of the range of
the BCFA normal prior with a mean of zero and standard
deviation of .10 used for cross-loadings theorized to be zero
in continuous data (Muthén & Asparouhov, 2012), and (b) a
loading below .20 would not be of sufficient magnitude, in
our opinion, to warrant serious consideration as a trait marker
or substantively important cross-loading.

Using the .20 cut-off, the new target matrix and subsequent
rotated solution are shown in Table 6. Results suggested

TABLE 6
Second-Iteration Target Matrix and Results

Item D U H R D U H R

1 ? .76 .07 .14 −.02
2 ? .79 .05 .09 −.07
3 ? ? .64 .31 .07 −.05
4 ? .61 −.09 −.12 .14
5 ? ? .32 −.05 .35 .15
6 ? .44 −.03 .18 .18
7 ? −.03 .84 .14 −.10
8 ? −.15 .71 .10 .10
9 ? −.01 .64 −.15 .13
10 ? ? .33 .51 −.03 −.09
11 ? .22 .43 −.23 .15
12 ? ? .42 .38 .00 −.05
13 ? .11 .08 .77 .03
14 ? .15 −.01 .67 .15
15 ? ? .17 .12 .26 .37
16 ? −.18 −.08 .08 .80
17 ? .16 .08 .09 .62
18 ? .16 .10 −.11 .55
19 ? −.12 .04 .16 .55

Note. Loadings > = .20 shown in bold. D is distant, U is uninsightful,
H is humorless, and R is rigid.

that seven elements previously specified as 0 needed to be
unspecified (i.e., coded as ?) in the new target. Items 3 and
5 displayed salient cross-loadings on either the uninsightful
or humorless factors. Item 15 had a salient cross-loading on
rigid. Item 5, in fact, had the same loading on humorless
as on its theoretically intended factor. Items 10 and 12 also
were identified as having salient cross-loadings on distant.
Table 6 displays the updated target matrix and the subsequent
results. Observe that results based on this updated target
showed one additional cross-loading (Item 11 loaded 0.22 on
distant). Finally, Table 7 shows the last iteration. A new target
matrix based on these results led to the exact same target as
before, and, thus, the solution had converged. The above
results, including standard errors of the factor loadings and
correlations among the factors, were used in the subsequent
BCFA.

Application of BCFA Using ITR Results as Priors

In this section, we first present results from a BCFA with
default diffuse (non-informative) priors on the primary and
secondary factor loadings, as well as default diffuse priors
on the loadings hypothesized to be zero. This model was
estimated to assess the effect of default diffuse prior settings
on the loading estimates. Next, we present results from a
BCFA where informative, or empirically derived, priors are
implemented. We found that the former model did not con-
verge and that more informative priors were needed in this
modeling context.

The Mplus version 7.11 software program (Muthén &
Muthén, 1998–2012) was used to implement the Bayesian
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TABLE 7
Third-Iteration Target Matrix and Results

Item D U H R D U H R

1 ? .77 .06 .14 −.03
2 ? .79 .04 .09 −.08
3 ? ? .66 .30 .07 −.05
4 ? .62 −.10 −.13 .14
5 ? ? .31 −.05 .36 .14
6 ? .44 −.04 .18 .18
7 ? .01 .82 .15 −.09
8 ? −.12 .70 .10 .11
9 ? .04 .62 −.15 .13
10 ? ? .37 .50 −.03 −.09
11 ? ? .26 .41 −.24 .15
12 ? ? .45 .37 −.01 −.05
13 ? .08 .08 .78 .03
14 ? .13 −.01 .68 .15
15 ? ? .17 .11 .26 .37
16 ? −.17 −.08 .08 .79
17 ? .17 .08 .09 .61
18 ? .19 .10 −.12 .54
19 ? −.12 .04 .16 .54

Note. Loadings > = .20 shown in bold. D is distant, U is uninsightful,
H is humorless, and R is rigid.

model estimation. In the Bayesian analyses, the model pa-
rameters receiving priors were the factor loadings and the
logit thresholds for these polytomous items. The normal
distribution, N(μ, σ 2), was used as the prior for all model
parameters. Specifically, the hyperparameters μ and σ 2

represent the mean and the variance of the normal prior,
respectively.

An initial model was specified for the confirmatory sam-
ple (N = 485) via the Bayesian estimation framework using
default diffuse (i.e., non-informative) priors as implemented
in the software program. Each item was allowed to load
freely onto each factor, and the default settings for prior dis-
tributions were implemented for all primary and secondary
factor loadings, as well as loadings hypothesized to be zero.
Specifically, the default distributions were as follows: factor
loadings for categorical items were distributed N(0,5), cat-
egorical item thresholds were distributed N(0,1010), factor
variances were distributed inverse-Wishart denoted IW(1,5),
and factor covariances were distributed IW(0,5). Using this
initial model with the default prior settings, we attempted
to obtain Markov chain Monte Carlo (MCMC) chain con-
vergence through the following. We estimated the model us-
ing the default settings in Mplus, which specified 2 MCMC
chains and a maximum of 50,000 iterations (with the first
half discarded as the unstable, burn-in phase of the chain).
We then estimated the model with 100,000 MCMC iterations
and 2 chains, with the first 50,000 iterations discarded as the
burn-in. Finally, we estimated this model with 100,000 iter-
ations (50,000 as burn-in) and only a single MCMC chain to
assess whether between-chain convergence problems were
presenting convergence problems. None of these estimation
scenarios resulted in convergence.

Given that salient loadings and loadings hypothesized to
be zero were estimated freely in this model, the lack of con-
vergence was likely not due to model misspecification (i.e.,
salient loadings were not fixed to zero in this model). Instead,
problems with obtaining convergence may be linked to the
use of default diffuse priors. The variance hyperparameter
values for the default diffuse priors specified on the factor
loadings (σ 2 = 5), and item thresholds (σ 2 = 1010) were
relatively large. These default diffuse priors may have been
improper priors for some of the model parameters, which can
make convergence difficult to obtain. These non-convergence
results using default diffuse priors presented a compelling
case for specifying more informative priors within BCFA.

In an attempt to specify more reasonable and informa-
tive priors for the factor loadings, empirically informed (or
data-driven) priors were implemented based on ITR results
obtained previously.5 Perhaps the most common method for
specifying a data-driven prior is to use estimates from a pre-
vious analysis to drive the hyperparameter values (e.g., see
Berger, 2006; Brown, 2008; Candel & Winkens, 2003; van
der Linden, 2008). For illustration, we used the WLSMV es-
timates resulting from ITR (shown in Table 7) to determine
the hyperparameter values for each prior specified for these
loadings. The WLSMV estimate was used as the mean hy-
perparameter, and the standard error of the estimate was used
as the variance hyperparameter. Typically, the squared value
of the standard error of the estimate would be deemed more
comparable to the variance hyperparameter. Because these
standard errors all were in decimal form below 1.0, how-
ever, squaring the value would decrease the hyperparameter
variance value, thus, increasing the precision of the prior to
an unrealistic (or excessive) degree. In an attempt to use a
relatively weakly informative, normal prior where the pre-
cision of the prior was not increased to an unreasonable (or
excessive) level, the WLSMV standard error of the estimate
was directly used as the variance hyperparameter.

For Bayesian estimation, the Gibbs sampling algorithm
was used to construct the MCMC chain. The default number
of MCMC chains (2) was requested, and 25,000 iterations
were requested in the burn-in phase and an additional 25,000
iterations in the post-burn-in phase of the chain (i.e., the
posterior distribution).

Chain convergence was monitored by visually examin-
ing the MCMC trace (or convergence/history) plots for each
model parameter. All model parameters had trace plots that
showed tight, horizontal bands, thus, indicating no visual
signs of non-convergence within the chains. Also, the Brooks,
Gelman, and Rubin convergence diagnostic (Gelman, 1996;
Gelman & Rubin, 1992a, 1992b) was examined. Within the
Mplus software program, this convergence diagnostic cre-
ates a ratio of within- and between-chain variation. If this
ratio is very near 1.0 (according to a preset bound), then

5Informative priors only were specified for the factor loadings to illustrate
how ITR results can be used to inform priors for factor loadings. All other
parameters were estimated with default diffuse priors as specified above.
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TABLE 8
OAS 19 Bayesian Confirmatory Factor Analysis in Which Prior Distributions on Loadings and Cross-Loadings Were Determined

by Iterated Target Rotation

Factor Loadings
PPC Confidence Intervals and

p Values

Item Distant (F1) Uninsightful (F2) Humorless (F3) Rigid (F4) 95% CI p Value

1 .70 −.02 .12 .07 −32.3, 35.8 .52
2 .82 .01 −.05 −.06 −31.0, 36.8 .52
3 .63 .18 .04 .08 −25.5, 28.4 .54
4 .64 −.04 −.03 −.01 −20.0, 30.0 .57
5 .37 −.01 .43 −.06 −23.7, 30.7 .51
6 .37 −.04 .22 .18 −26.5, 32.0 .50
7 −.02 .73 .08 −.02 −27.4, 33.9 .54
8 −.04 .57 .06 .09 −24.0, 31.4 .54
9 −.02 .63 −.10 .15 −14.5, 26.2 .56
10 .38 .57 −.06 −.17 −32.5, 39.0 .44
11 .16 .42 −.06 .08 −23.6, 35.2 .54
12 .40 .36 .12 −.05 −26.8, 34.0 .53
13 .17 .09 .65 .05 −27.3, 31.2 .57
14 .09 −.03 .72 .13 −22.2, 25.7 .49
15 .23 .11 .26 .32 −52.5, 45.2 .48
16 −.16 −.09 .04 .82 −22.4, 28.2 .53
17 .11 .13 .10 .62 −30.6, 34.7 .47
18 .34 .06 −.19 .45 −24.3, 28.8 .53
19 −.16 .02 .04 .68 −23.9, 39.9 .61

Factor Correlations

F1 F2 F3 F4
F1 —
F2 .30 —
F3 .65 .28 —
F4 .49 .40 .55 —

Note. Significant loadings bolded. CI = confidence interval; PPC = potential parameter change; F = factor.

the 2 MCMC chains are not fluctuating away from one an-
other and the within-chain variation is stable; obtaining these
results point toward chain convergence. Convergence was
met for the present investigation based on this diagnostic.

Results for the factor loadings are presented in Table 8.
The same loading patterns held across the four factors com-
pared to the WLSMV results presented earlier (Tables 4 and
7). Notice, however, that the cross-loadings hypothesized to
be zero are all very small and near zero. The model pre-
sented in Table 8 illustrates the added flexibility of Bayesian
methods in that loadings hypothesized to be zero are allowed
to approximate zero rather than be fixed to zero, which is
common in traditional approaches.

When fitting a model via the Bayesian estimation frame-
work, a common procedure for assessing model fit is called
posterior predictive checking (PPC). Essentially, the PPC
technique simulates data based on the proposed model. The
fit of the model then is compared across the simulated data
and the empirical data. This comparison is carried out through
a discrepancy function (typically likelihood-ratio based). If
there is a significant difference between the fit of the simu-
lated and the fit of the empirical data, then model fit has not
been obtained.

The PPC procedure specifically tests a null hypothesis that
the difference between the fit to the simulated and empirical
data is zero (i.e., the fit of the model is exactly the same
for both data sets). The most interpretable result obtained
via PPC is the 95% confidence interval for this measure of
discrepancy. In particular, if the confidence interval does not
contain the value zero, then evidence of model misfit has been
obtained. For the technical details of the PPC procedure, see
Berkhof, Mechelen, and Gelman (2003), Gelman (2003), or
Stern and Cressie (2000).

The item-level fit results obtained via PPC are presented
in Table 8. The 95% confidence intervals for the 19 items
all contained the null value; the respective nonsignificant
posterior predictive p values also are presented. These results
showed that there was no evidence for model misfit at the item
level.

DISCUSSION

Factor rotation to a partially specified matrix (Browne, 2001)
falls between analytic rotations (i.e., no specified elements,
and the rotation emphasizes one or more rules of simple
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structure criteria) and Procrustes rotation (i.e., a fully speci-
fied target matrix). In a partially specified target rotation, the
researcher identifies a subset of loadings that are expected
to be near zero and leaves the other loadings free to be any
value. The rotation criterion function involves minimizing
only the differences between the specified elements of the
target matrix and the final solution and, therefore, only the
specified elements control the factor rotation.

Specified elements can be selected based on the-
ory,6previous factor analytic results, or as shown Study 1,
an ordinary CF analytic rotation. Regardless, the target rota-
tion results can be used to suggest a new target matrix, and
additional target rotations may be performed in an iterated
fashion. Browne (2001) suggested that ITR can be viewed
as the interplay between the researcher and the data. We
suggested automating the procedure by selecting a cut-off
value. Admittedly, the selection of this cut-off is arbitrary;
if a selected cut-off value is low (e.g., .05) there may be too
few specified elements to identify the factors and define a
meaningful solution. If set too high (e.g., .40), then many
smaller but potentially salient loadings may be misspecified,
which ultimately may distort the factor rotation. In our ex-
ploratory analyses of the OAS, we selected a cut-off of .20
to be consistent with the variance of the prior distribution
for hypothesized zero loadings in BCFA as implemented in
Mplus. In other research contexts, the determination of a cut-
off value in ITR, clearly, is in need of further study. At this
point, we suggest that researchers try multiple values (e.g.,
.30, .20, and .10) and explore the consistency of results.

In this article, we suggested and demonstrated two impor-
tant roles for ITR. The first potential application of ITR is
as an alternative or complement to analytic rotations in EFA
(see also Asparouhov & Muthén, 2009, for application of
target rotation in exploratory structural equation modeling).
In Study 1, our Monte Carlo comparison of analytic rotations
versus ITR in data that varied in factor complexity suggested
that the ITR method holds promise for exploratory factor ro-
tation. It appears to be reliable (very high convergence rates)
and accurate (low RMSE) even when faced with data drawn
from highly complex population structures.

Although the scope of our Monte Carlo investigation was
limited, especially in terms of our ability to study system-
atically the recovery of factor correlations as in Sass and
Schmitt (2010), we were able to draw several clear con-
clusions. As expected, ITR was “better” than any CF rota-
tion, and its superiority improved as the structure became
more complex. These results are not surprising given the
somewhat unfair nature of the comparison; CF rotations are
a single-shot procedure with a fixed criterion (k), whereas

6We note that if there is an a priori theory regarding a scale’s structure,
target rotation-relative to any analytic rotation-provides the “fairest” ex-
ploratory evaluation of that structural theory; if the target rotation results are
not consistent with the a priori theory, no other CF rotation method will be
either.

ITR are, in a sense, self-correcting. Moreover, the starting
point—the rotation method used to determine the initial tar-
get matrix—made little difference. Finally, sample size influ-
enced the results; larger sample sizes yielded more accurate
results for all procedures (for further commentary on sample
size in exploratory factor analysis see Hogarty, Hines, Krom-
rey, Ferron, & Mumford, 2005, and MacCallum, Widaman,
Zhang, & Hong, 1999).

We also believe that a second important application of ITR
occurs in BCFA. BCFA requires the specification of prior dis-
tributions, and default values are provided in programs such
as Mplus. These defaults (e.g., 1010 for the variance of factor
loadings for continuous items, or 5 for the variance of factor
loadings for categorical items) may not be appropriate for any
particular dataset, and this issue of how to properly specify
priors for primary loadings, secondary cross-loadings, and
near zero cross-loadings under a variety of data conditions
(sample size, degrees of communality) clearly needs more
research.

In the Study 2 analyses of the OAS, ITR appeared to be
useful in two important ways. First, it can be used to identify
items that have salient loadings on more than one factor. Sec-
ond, the results of the ITR can be used to suggest empirically
informed priors. We used an ITR with a .20 criterion and
found seven (of 19) items with salient loadings on more than
one factor. When we ran Mplus using default priors to evalu-
ate this structure, we did not obtain a converged solution for
any of 3 different MCMC settings, but when we ran Mplus
using empirically informed priors, we obtained a well-fitting
solution. This suggests that more work on specifying priors
and the evaluation of fit in BCFA is a worthwhile invest-
ment. For now, we suggest that researchers consider the use
of empirically based priors, especially in situations like the
present data where the sample is large enough to divide into
exploratory and confirmatory parts.

Summary

In EFA, researchers have a myriad of analytic rotation op-
tions; many yield equivalent solutions but may present dif-
ferent ways of understanding the data structure. Rotations
from the CF family, for example, vary only in their empha-
sis on different simple structure criteria by weighting rows
and columns differentially [(Equation (1)]. Sass and Schmitt
(2010), thus, suggested inspecting the results of multiple ro-
tations, such that the researcher can decide which is “best.”
Here, we add yet another approach for deciding on an op-
timal rotated solution by describing and applying an ITR
methodology. ITR, in contrast to CF rotation, does not at-
tempt to simplify rows or columns of a rotated factor matrix
but rather seeks to find all salient loadings, where salient is de-
fined by the researcher. On the other hand, Sass and Schmitt
(2010) noted that the phenomenon of “factor collapse” is
thought to be extremely rare in CF rotations. Whether this
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is true for ITR under a variety of scenarios remains to be
demonstrated.

In CFA contexts, Asparouhov and Muthén (2009) demon-
strated the use of Geomin and Target rotations in exploratory
structural equation modeling (see also, Marsh et al., 2009).
We see no reason why an ITR cannot serve a similar role,
given that it appears to be well suited for data with a com-
plex structure where items may have meaningful loadings
on more than one factor. In fact, ITR may be most useful in
exactly the data analytic contexts where exploratory struc-
tural equation modeling is most needed. Finally, ITR also is
consistent with the practice of identifying potential model-
ing problems prior to fitting more restricted models and then
conducting post hoc modifications (Browne, 2001). On the
other hand, ITR changes the rotation method to be more and
more consistent with the data with each iteration, based on a
benchmark value for the loadings. It, therefore, also runs the
risk of capitalizing on chance in terms of what elements are
specified and non-specified.

Despite our relatively clear and encouraging results, we
must warn against the possible misuse of iterated target ro-
tations for corroborating theories of factor structure. In the
introduction, we cited Guilford and Hoepfer (1971) as early
users of an iterated target rotation approach. Specifically,
these researchers used a series of target rotations to attempt
to validate the SOI model. The iterated part of their proce-
dure was to update a target so that the resulting factors would
conform more closely to predictions from SOI theory. (Note:
they used what now would be considered to be very odd tar-
get matrices, such as factors with only one or two indicators,
orthogonal factors, and in one study, an additional “waste-
basket” factor.) They then advanced the argument that their
procedure produced pattern matrices highly consistent with
SOI theory.

Horn and Knapp (1973, 1974), however, showed that,
by using iterated target rotations, they could validate pat-
tern matrices produced by even randomly generated theo-
ries. Clearly, the Guilford and Hoepfner (1971) rotations
did not provide strong, unequivocal evidence for SOI the-
ory, which, as Horn and Knapp stated, is not to say that
SOI theory is wrong, but rather it was not convincingly sup-
ported by this rotation technique. In short, Horn and Knapp
demonstrated that iterated target rotations can be used to
find almost anything, if not conducted properly. We believe
that ITR, as suggested in the present article, does not suffer
from the same problems as the Guilford and Hoepfner ap-
proach because: (a) we begin with results from an analytic
rotation to define the initial target (not a theory of structure),
and (b) our iterations are based on an empirical criterion
(not a subjective one). The superiority of ITR compared to
other CF rotations, however, as well as the benefits of de-
riving priors for BCFA from ITR results, should be studied
further so that we can better realize the potential of these
approaches.
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