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When CAT is not an option: complementary methods of test
abbreviation for neurocognitive batteries
Tyler M. Moorea, Ellyn R. Butlera, J. Cobb Scotta,b, Allison M. Porta, Kosha Ruparela,
Lucky J. Njokwenia, Raquel E. Gura and Ruben C. Gura,b

aDepartment of Psychiatry, Brain Behavior Laboratory, Perelman School of Medicine, University of
Pennsylvania, Philadelphia, PA, USA; bVISN4 Mental Illness Research, Education and Clinical Center at the
Philadelphia VA Medical Center, Philadelphia, PA, USA

ABSTRACT
Introduction: There is an obvious need for efficient measurement
of neuropsychiatric phenomena. A proven method—computerized
adaptive testing (CAT)—is not feasible for all tests, necessitating
alternatives for increasing test efficiency.
Methods: We combined/compared two methods for abbreviating
rapid tests using two tests unamenable to CAT (a Continuous
Performance Test [CPT] and n-back test [NBACK]). N=9,498 (mean
age 14.2 years; 52% female) were administered the tests, and
abbreviation was accomplished using methods answering two
questions: what happens to measurement error as items are
removed, and what happens to correlations with validity criteria
as items are removed. The first was investigated using quasi-CAT
simulation, while the second was investigated using
bootstrapped confidence intervals around full-form-short-form
comparisons.
Results: Results for the two methods overlapped, suggesting that
the CPT could be abbreviated to 57% of original and NBACK
could be abbreviated to 87% of original with the max-acceptable
loss of precision and min-acceptable relationships with validity
criteria.
Conclusions: This method combination shows promise for use in
other test types, and the divergent results for the CPT/NBACK
demonstrate the methods’ abilities to detect when a test should
not be shortened. The methods should be used in combination
because they emphasize complementary measurement qualities:
precision/validity..
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Today, it is possible to learn someone’s entire genome from a single blood draw (or even
less invasively), allowing collection of genetic data with almost no cost to the study par-
ticipant. Thus, one of the biggest roadblocks to large-scale genomic research is not
acquiring the genetic material as such, but rather the time it takes to measure everything
else, including psychological traits (e.g. cognitive ability, psychopathology, etc.), demo-
graphic information, medical histories, general biometrics (blood pressure, height,
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weight, etc.), biological samples (hair, stool, blood, saliva, etc.), and perhaps even neuroi-
maging protocols. Taking cognition as an example, even the most well-established neu-
rocognitive test batteries used in large-scale genomic studies (e.g. Penn Computerized
Neurocognitive Battery, Cambridge Neuropsychological Test Automated Battery, etc.)
(Gur et al., 2001; Gur et al., 2010; Robbins et al., 1994) take about one hour to complete.
Combined with the need to collect demographics, clinical symptoms, neuroimaging, and
countless other variables on a large number of participants (∼10,000+), one hour is often
too long. The result is usually a compromise whereby the researchers choose a more
limited number of tests, sacrificing breadth of measurement to fit within the time
constraints.

The pressure to minimize test/scale administration time is felt especially by research
groups who administer collections of tests – test batteries – on a regular basis. If there is a
good method for decreasing administration time, it could be applied to all tests in a
battery, cumulatively resulting in large time savings. One method to decrease adminis-
tration time is computerized adaptive testing (CAT) (Chang, 2015; Wainer, 2000),
which incorporates methods from item response theory (IRT) (Embretson & Reise,
2009) to build item banks and administer only the most informative items to examinees.
IRT allows characterization of individual test items (e.g. their difficulty), which enables a
real-time testing algorithm to determine which item from an item bank will provide the
most information about an examinee, given the examinee’s current estimated trait level.
For example, if nothing is known about the examinee, his/her ability could be assumed to
be average, and the algorithm would choose the best item for someone of average ability.
Once that person responds to the item, his/her trait can be estimated based on that one
response, and the next item administered will be the one that is optimal at the newly esti-
mated trait level. This targeted item administration means fewer items must be adminis-
tered to achieve any given level of measurement error than if the items were administered
sequentially. This method has proven useful in saving administration time and maximiz-
ing precision1 (Gibbons et al., 2012; Mizumoto et al., 2019; Yudien et al., 2019), especially
since building CATs has become more cost effective (e.g. Scalise & Allen, 2015).

However, computerized adaptive testing is not appropriate for all types of tests. For
example, a test might require someone to freely recall words from a list of words just
read aloud by a proctor. In this case, the test is just one item scored as a count
(“Recall as many words as you can”), which is not appropriate for CAT. Another
example would be a test that is not self-paced. For example, continuous performance
tests (CPTs) (Riccio et al., 2004) and n-back tests (requiring participants to remember
stimuli presented n spaces “back” in a display sequence; Owen et al., 2005) both
present stimuli rapidly and continue presenting stimuli regardless of whether the partici-
pant responds. This presentation of stimuli independent of examinee behavior is
obviously not amenable to CAT. Thus, research groups hoping to create an abbreviated
version of an entire battery (collection of tests) can expect some of their tests to be una-
menable to CAT. Although there are IRT models designed for signal-detection-like tests
(Thomas et al., 2018), these models have not yet been linked to computerized adaptive
testing or used for test abbreviation as such. An obvious question is, if we are dealing
with a test for which “CAT is not an option”, why simulate CAT administrations of it
(which we do below)? The answer is that CAT would be good for these tests except
for their speed (∼1 s or less per stimulus), which is an unalterable characteristic of the
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tests. However, simply because CAT is not feasible does not mean item parameters
cannot be estimated and used in informative simulations.

The creation of short/abbreviated test forms has been a goal of psychometricians for
decades, and there are several well-established methods for doing so. These include
selecting items that correlate most strongly with the full scale (e.g. Francis et al., 1992;
Geil, 1945; Straus & Douglas, 2004), selecting items that most improve relationships
with external validity criteria (Bae & Cho, 2004), removing items that demonstrate
bias (Bann et al., 2012), selecting items that have high factor loadings (Bagley &
Mallick, 1978; Joseph et al., 2004), selecting items that have a desirable2 spread of
difficulty parameters (Calamia et al., 2011; Cole et al., 2004), selecting items based on
expert human input rather than quantitative analysis (e.g. Harris, 1975; Whitman
et al., 2013), and, quite often, combinations of the above (Manos et al., 2011; Peters
et al., 2012; Sturm et al., 2017). The two combined methods used in the present study
(described below) most closely match the first, second, fourth, and fifth approaches men-
tioned above: correlation with full form, correlation with validity criteria, high factor
loadings (IRT discrimination parameters), and desirable spread of difficulty parameters.
This approach most closely matches those described by Reise and Henson (2000), Hol
et al. (2007), and Choi et al. (2010). This combined approach is unique not in its coverage
of so many criteria (a common approach), but in its combined treatment of item dis-
crimination and difficulty (via CAT simulation; see below). Some existing methods
account for item difficulty, but these tend to either ignore item discrimination
(Calamia et al., 2011; Hibbard et al., 2005) or subjectively choose items that span the
difficulty continuum without tying those parameters to any other criteria or approaches
used (e.g. Colledani et al., 2019).

The aim of the present study was to use two methods – one based on score validity
(first and second approaches in above paragraph) and the other based on standard
error of measurement (fourth and fifth in above paragraph) – to create optimal short-
forms for two rapid tests on the Penn Computerized Neurocognitive Battery, the Penn
Continuous Performance Test (CPT) and NBACK test. We used data from a large neu-
rodevelopmental cohort to compare these two methods and examine their utility to
create more economical neurocognitive assessments when the tests are not amenable
to CAT.

Methods

Participants

Participants were part of the Philadelphia Neurodevelopmental Cohort (PNC) (Calkins
et al., 2014; Calkins et al., 2015; Moore et al., 2016; Satterthwaite et al., 2014; Satterthwaite
et al., 2016), which included youth (age 8–21) recruited through an NIMH-funded Grand
Opportunity study characterizing clinical and neurobehavioral phenotypes in a geno-
typed, prospectively accrued community cohort. All study participants previously con-
sented for genomic studies when they presented for pediatric services within the
Children’s Hospital of Philadelphia (CHOP) health care network. At that time, they pro-
vided a blood sample for genetic studies, authorized access to Electronic Medical
Records, and gave written informed consent/assent to be recontacted for future
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studies. Of the 50,540 genotyped subjects, 18,344 met criteria necessary to be included in
the study (listed below) and were randomly selected, with stratification for age, sex, and
ethnicity. A total of 9,498 enrolled in the study between 11/2009–12/2011 and were
included in this analysis.

The sample included children in stable health, proficient in English, and physically
and cognitively capable of participating in an interview and performing the computer-
ized neurocognitive testing. Youths with disorders that impaired motility or cognition
(e.g. significant paresis or palsy, intellectual disability) were excluded. Notably, partici-
pants were not recruited from psychiatric clinics, and the sample is not enriched for indi-
viduals seeking psychiatric help. Participants provided informed consent/assent after
receiving a complete description of the study and the Institutional Review Boards at
Penn and CHOP approved the protocol. Table 1 shows the demographic characteristics
of the sample, as well as rates of common mental disorders.

Measures

Continuous performance test
The Penn CPT (Gur et al., 2010) measures vigilance and visual attention independent of
working memory or perceptual factors. Vertical and horizontal lines in 7-segment dis-
plays appear on the screen at a rate of one second each. The participant is instructed
to press the spacebar when the lines are configured as complete numbers (first half of
task) or complete letters (second half of task) and to not press when the lines are not
complete numbers or letters, respectively. Each half lasts 1.5 min, and during each
one-second response window, the stimulus is presented for only 300 milliseconds
(leaving 700 milliseconds of blank screen). If a stimulus is shown and the examinee
behaves correctly (press in the case of targets, don’t press in the case of foils), that
“item” is a correct response. For the validity-centered method (successive item
removal; see below), the key outcome was d-prime, defined as the z-transform of the
hit rate (proportion of targets for which the participant correctly pressed the space
bar) minus the z-transform of the false alarm rate (proportion of foils for which the

Table 1. Sample demographic and basic
lifetime clinical information.
Variable Mean (SD)

Age, months (SD) 170.3 (43.9)
Prop. Female 0.52
Prop. African American 0.33
Prop. Caucasian 0.56
Prop. Hispanic 0.07
Avg. Parent Edu., yrs. (SD) 14.3 (2.3)
Prop. with Depression 0.12
Prop. with GAD 0.03
Prop. with OCD 0.03
Prop. with Psychosis 0.04
Prop. with ADD 0.18

Note. Prop = proportion; yrs = years; SD = stan-
dard deviation; GAD = generalized anxiety dis-
order; OCD = obsessive-compulsive disorder;
ADD = attention deficit disorder.
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participant incorrectly pressed the space bar). For example, if someone correctly pressed
the space bar on 99% of the targets and incorrectly pressed the space bar on 20% of the
foils, his/her d-prime would be Z(0.99) – Z(0.20) = 2.33 – (−0.84) = 2.33 + 0.84 = 3.17.
For the precision-centered method (CAT simulation), the key piece of information is
the standard error of the score, which is obtained by traditional expectation-maximiza-
tion (Bock & Aitkin, 1981) latent trait scoring.

n-Back
The Penn Letter n-Back Test (NBACK) (Ragland et al., 2002) measures working memory,
the ability to maintain and update goal-related information. Participants attend to a con-
tinual series of letters that flash on the screen (one at a time) and press the spacebar
according to three different rules (0-back, 1-back, and 2-back). During the 0-back con-
dition, the participant is instructed to simply respond to a currently present target (“X”).
During the 1-back condition, the participant is instructed to press the spacebar when the
letter on the screen is the same as the previous letter. During the 2-back condition, the
participant is instructed to press the spacebar when the letter on the screen is the
same as the letter before the previous letter (i.e. 2 letters back). In all trials, the inter-
stimulus interval (ISI) is 2.5 s, and the stimuli (letters) are presented for 0.5 s each.
The participant practices all three principles before testing. If a stimulus is shown and
the examinee behaves correctly (press in the case of targets, don’t press in the case of
foils), that “item” is a correct response. Scoring of the NBACK was the same as the
scoring of the CPT, where the NBACK also has clear targets and foils.

Clinical assessment
An in-person interview based on the structured Schedule for Affective Disorders and
Schizophrenia for School-Age Children (GOASSESS) evaluated lifetime history of clini-
cal symptoms (Calkins et al., 2014; Calkins et al., 2015) across major psychopathology
domains. Participants were assessed dimensionally and categorically and had to have sig-
nificant symptoms associated with distress that affected functioning to score high on
specific domains of mood/anxiety, fear, externalizing behavior, and psychosis. The pro-
cedures used for obtaining the dimensional clinical scores are described in Shanmugan
et al. (2016, Supplement) and Moore et al. (2019).3 Briefly, item-factor analysis was per-
formed on 112 clinical symptoms extracting four theoretical factors – three described by
Krueger (1999), plus psychosis – where those factors were allowed to correlate. Of the
four dimensional factors (Anxious-Misery, Fear, Externalizing, and Psychosis), only Psy-
chosis was used here due to its unambiguous and well-established associations with cog-
nition. The clinical assessment also included the Children’s Global Assessment Scale
(CGAS) (Shaffer et al., 1983).

Approximation of socioeconomic status
Socioeconomic status was approximated using neighborhood-level characteristics
obtained by geocoding participants’ addresses to census and crime data in the Philadel-
phia area. Neighborhood characteristics were measured at the block-group level and
included median family income, percent of residents who are married, percent of real
estate that is vacant, and several others; see Moore et al. (2016) for further details.
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Analysis

The first method of test abbreviation (Simulated Successive Item-Removal; SSIR)
involved simulating test administrations as successive numbers of items were removed
and examining the effect of item-removal on the criterion validity of total scores. The
second method (CAT Simulation Method) involved calibrating items using IRT and
simulating the number of stimuli needed to achieve various levels of precision (indicated
by standard error of measurement).

Simulated successive item removal (SSIR) method
The SSIR method focuses on what happens when test items/stimuli are removed. Specifi-
cally, what happens to the relationship between test scores and important criteria (e.g.
ADHD severity) when successive items are removed? For example, if we find that
scores on a 100-item test correlate −0.25 with ADHD severity, we want to know what
happens to that −0.25 correlation when 1 item is removed (i.e. only 99 items are admi-
nistered) compared to the full test version. Items are successively removed until the point
(e.g. going from 82 items to 81 items) where removal of one additional item decreases the
magnitude of the −0.25 correlation beyond what would be considered acceptable (see
below for description of unacceptable levels). This point – where the score-criterion
relationship is deflated to an unacceptable level – is the point at which the test is “too
short.” Using this information, a short form can be constructed that comprises just
enough items to achieve an acceptable relationship with ADHD score (indicating accep-
table measurement precision).

The Simulated Successive Item Removal method for the CPT proceeded as follows:

(1) Item order was scrambled (as in real administrations of the CPT), and d-prime was
calculated for the full test plus each successive short form (e.g. d-prime after the last
item is removed, d-prime after the last two items are removed, etc.), for a total of 89
short-form scores.

(2) Bivariate relationships were calculated between the full-form d-prime and each of
the short-form’s d-prime (full-short correlations).

(3) Bivariate relationships were calculated between the full-form d-prime and the fol-
lowing validity criteria: age, global assessment of functioning (CGAS), socioeco-
nomic status, psychosis (severity) score, and total score on a working memory test
(NBACK).

(4) The same bivariate relationships above were calculated for all short-form scores.
(5) The above four steps were repeated 1,000 times to obtain a distribution of each

bivariate relationship.
(6) For each short-form (e.g. one item removed, two items removed, etc.), the relation-

ships with validity criteria were compared to the same relationships using the full test
by taking the ratio of the correlations. A ratio of 1.0 would mean the full-form and
short-forms have exactly the same correlation with the validity criterion, and devi-
ations (up or down) from 1.0 would suggest a difference between the correlations.
Consistent with the common (albeit arbitrary) 0.90 cutoff (e.g. Baker et al., 2019;
Dunkel et al., 2005; Jamison et al., 2007; Ward et al., 2018) for what is considered
an acceptable correlation of a short-form with its corresponding original form (i.e.
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a 10% lower correlation), we used 10% as the maximum acceptable difference
between short- and long-form criterion correlations. That is, if 0.90 or 1.10 fell
within two standard deviations of the ratio of correlations between the full test
and a validity criterion, that short form was considered too short. For each short
form and for each validity criterion (completely crossed), we obtained a distribution
of ratios of correlations, and if the ratio was not between > 0.90 and < 1.10 with 95%
confidence, the short-form was considered an insufficient substitute for the full form.

(7) For each short-form (e.g. one item removed, two items removed, etc.), the distri-
bution of correlations with the full-form (short-full correlations) was examined. If
0.90 (the minimum acceptable) was contained within two SDs of the distribution,
the short-form was considered too short.

For the NBACK, the steps described were the same, with two exceptions. Item order
for a given form is important for the NBACK because the correctness of a response
depends on previous stimuli. Therefore, the item order was preserved, and variation
across simulations was produced by random row sampling (random sampling of
exactly half of the response vectors). In addition, correlations with the CPT were used
as validity criteria in bivariate relationships.

CAT simulation method
Introduced4 by Moore et al. (2015) and building on the work of Reise and Henson (2000)
and Choi et al. (2010), the CAT-simulation method of short-form creation used here has
shown promise in both cognitive (Bezdicek et al., 202020; Roalf et al., 2016) and non-cog-
nitive (Lawson et al., 2020; Saine et al., 2020) assessments. This method uses IRT, which is
the measurement theory underlying and facilitating CAT. Details of IRT (Embretson &
Reise, 2009) and CAT (Wainer, 2000) are beyond the present scope. Principally, IRT
takes the focus away from evaluating psychometric properties of the test as a whole
(e.g. global reliability) and instead focuses on characterizing each individual item (e.g.
difficulty of the item, how well the item can discriminate between test-takers with high
versus low scores). These item characteristics, in combination, determine how much
information an item provides about a person at any given trait level. Further details of
IRT are provided in the Supplement, but a key point here is that IRT is the basis for Com-
puterized Adaptive Testing (CAT). The item characteristics mentioned above can be esti-
mated for multiple items (e.g. all items on a test), which composes an “item bank”, the
group of items from which a CAT algorithm can choose if the test is administered adap-
tively. Establishing an item bank also allows one to simulate what would happen if a test
were taken adaptively (as a CAT), and this simulation is the basis of the CAT-simulation
method used here. After simulating CAT administrations, one can look post hoc at how
often each item was administered; the items administered most often can be considered
the “best” items and should be included on the short form. Here, we use a variation of the
CAT-simulation method in which we determined the number of items necessary to
achieve a predetermined precision goal (e.g. SEM < 0.30), rather than selecting the
specific items providing the most information (on average). That is, whereas the CAT-
simulation method of creating a short-form usually involves selecting items based on
exposure (frequency of administrations), in this case that exposure is fixed (random
exposure in the case of the CPT, and sequential exposure in the case of the N-BACK).
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Indeed, the only “CAT” characteristic of the simulated tests in this case is that they have a
standard-error based termination criterion, which depends on IRT item parameter
estimates.

In summary, the CAT-simulation method finds items that have an optimal5 combi-
nation of discrimination and difficulty – high discrimination, with difficulty within a
reasonable range. Discrimination measures the differential capability of an item, such
that a high discrimination value indicates that an item provides a high capability to differ-
entiate subjects. High discrimination is desirable because it indicates that an item can dis-
tinguish among more fine-grained levels of the trait than if it had low discrimination.
Having difficulty parameters within a reasonable range avoids items answered cor-
rectly/incorrectly by almost everyone (too easy or too difficult). Consider two hypothe-
tical items: item #1 has a discrimination of 1.0 (normal) and difficulty of 0.0 (average);
item #2 has a discrimination of 2.0 (high) and difficulty of 2.0 (high). So, item #2 has
better discrimination than item #1, but item #1 has better difficulty (within typical
range). So how do we determine which item should be selected for a short-form? The
obvious problem is that researchers will usually not be able to “eyeball” a table of item
parameter estimates and determine which combination is optimal, and thus a practical
way is to simulate what would happen if a computer algorithm (CAT) were selecting
these items based on information, which is inversely related to standard error of
measurement. If the algorithm selects an item at any given time, it means that item
was indeed the absolute best of all options in the item bank, so an item that is selected
often is a good item. It is worth reiterating that, as with the use of the word “optimal”
above, the assertion that “an item that is selected often is a good item” here depends
on some assumptions. For example, in real-world CAT applications, it is sometimes
advantageous to limit exposure of some items and promote exposure of others – i.e. to
prevent item under- or overexposure (Eggen, 2001; Revuelta & Ponsoda, 1998).

The CAT-simulation method proceeded as follows:

(1) Dimensionality of the test was assessed to determine whether a unidimensional IRT
model can be used. Specifically, the ratio of first to second eigenvalues was examined
to determine whether there was any possibility of unidimensionality; if so (e.g. eigen-
value ratio > 3.0), follow-up tests would have been performed (parallel analysis
and fit of the unidimensional model) to confirm the unidimensionality (see
Slocum-Gori & Zumbo, 2011). If multidimensionality was detected – i.e. a unidi-
mensional IRT model was inappropriate – the optimal number of factors was deter-
mined in preparation for a multidimensional model. The planned tests for the
number of factors included the minimum average partial method (Velicer, 1976),
scree test (Cattell, 1966), and parallel analysis with Glorfeld correction (using 99th
percentile) (Glorfeld, 1995). However, in the present case involving targets and
foils, both theory (targets vs. foils) and the clean 2-factor solution (all targets on
one factor and all foils on another factor) suggested 2-factors.

(2) In the present data, multidimensionality was detected (ratios of 1st:2nd eigenvalues
= 1.94, 1.17, 1.94, 2.11, and 2.51 for the CPT Numbers, CPT Letters, NBACK 0-back,
NBACK 1-back, and NBACK 2-back, respectively), and item responses were there-
fore calibrated using a bifactor (Reise, 2012) IRT model, where each item loaded on
its specific factor (targets or foils) and on a general factor comprising all items.

8 T. M. MOORE ET AL.



Parameter estimates for the general factor are used here, and intercepts were trans-
formed to conventional IRT difficulty parameters using Equation 9 in Cai (2010).

(3) The parameter estimates for the general factor obtained from #2 above were input to
Firestar (Choi, 2009), which simulates test administrations. Normally, CAT simu-
lation follows some versions of the typical CAT procedure: select item based on
maximum information at current trait estimate, re-estimate ability based on
response, select best item based on new ability estimate, etc. Here, however, the
simulated test administrations proceeded non-adaptively – i.e. item-selection was
random for the CPT and sequential for the NBACK – and the administrations
stopped after a predetermined number of items (depending on the simulation con-
dition). Unlike in Moore et al. (2015), where the goal was to find which items were
selected most often during the simulations, the goal here was to determine the stan-
dard error of measurement we could expect (on average) after administration of x
items. It is all part of the same CAT-simulation procedure, and the focus on test pre-
cision here (rather than selecting specific items) is due to the fact that the stimuli are
(by design) administered randomly in the final test. We are trying to minimize the
number administered randomly.

Age associations
The sample used here had a fairly wide age range (8–21 years), and most importantly, this
age range is one of rapid and complex neurodevelopment. Theoretically, the only effect of
age is to improve or worsen performance (in this sample, improve), which would have no
effect on the metrics used here (measurement precision and correlations with criteria).
However, age could have other effects as well – e.g. the relationship between cognitive
performance and a given criterion might be weaker/stronger in older participants than
in younger participants. This age effect would affect our outcome metrics. For thorough-
ness, we therefore performed the SSIR method described above after splitting the sample
into younger (8–14 years) and older (15–21 years) groups.

Results

SSIR method

Figures 1–4 show the results of the SSIR method for the CPT and NBACK. Figures 1 and
2 show changes to correlations between full- and short-forms as items are removed. For
the CPT (Figure 1), the correlation stays fairly steady until >55 items are removed, at
which point the correlation plummets. Thus, the optimal number of items (point
where the correlation 95% CI first includes 0.95) for the CPT letters and numbers,
respectively, were 41 (46% of original) and 35 (39%). For the NBACK (Figure 2), there
is a more uniform decline in full-short correlations as items are removed, such that
the short forms quickly become too short as items are removed. The optimal number
of items for the NBACK 0-back, 1-back, and 2-back, respectively, were 26 (87% of orig-
inal), 23 (77%), and 24 (80%). Figures 3 and 4 show what happens to short-form corre-
lations with validity criteria (compared to full-form) as items are removed. For both tests,
the ratio of full-form to short-form correlations increases as items are removed. That is,
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the full form shows stronger correlations with validity criteria, and this difference
(reflected in a ratio) increases as items are removed. The focal points on Figures 3 and
4 are the places where the 2SD error bars touch the dotted lines at 1.10 and 0.90,
because these points indicate the limit of shortening for the test.

Table 2 shows the results of these analyses – i.e. the recommended number of items for
a short-form – corresponding to Figures 1-4. Two overall patterns are apparent. First, the
suggested CPT length (mean across phases = 53% of original) is much shorter than the

Figure 1. Mean Correlation between Short-Form and Full-Form Versions of the CPT, by Phase.

Figure 2. Mean Correlation between Short-Form and Full-Form Versions of the NBACK, by Phase.
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suggested NBACK length (mean 83% of original). Second, the suggested test length does
not differ substantially across validity criteria. The lowest average suggested length
(64.4%) comes from analyses using Age, while the highest average suggested length
(78.2%) comes from analyses using the convergent validity criterion (working memory
predicting attention, and vice versa). Based on the results in Table 2 and using the
10% rule described in Methods (point where CI of correlation ratio includes 0.90 or
1.10), we suggest that the minimum acceptable lengths of CPT letters phase, CPT
numbers phase, NBACK 0-back, NBACK 1-back, and NBACK 2-back, are 51 (57%),
43 (48%), 28 (93%), 23 (77%), and 24 (80%) items, respectively.

Figure 3. Ratios of Criterion Validity Correlations Using the Full-Form and Short-Forms of the CPT, by
Phase.

Figure 4. Ratios of Criterion Validity Correlations Using the Full-Form and Short-Forms of the NBACK,
by Phase.
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Age associations
Supplementary Figure S2 shows the same analyses as presented in Figure 3 but split by
age. Two points are worth noting. First, the functions for older and younger participants
are mostly overlapping until the midpoint (∼40 items removed). However – and this is
the second point – there does appear to be some consistent separation between the older
and younger participants in the Letters portion (blue curve slightly above red curve).
Supplementary Figure S3 shows the same analyses as above, but for the NBACK. As
for the CPT, there is very little separation between the older and younger groups (red
and blue curves) until the midpoint (∼11 items removed). Notably, some of the differ-
ences become quite large after this midpoint. However, unlike for the CPT, there is no
consistent difference between the curves – i.e. red appears above blue about as often as
the opposite.

CAT simulation method

Supplementary Tables S1 and S2 show the item parameter estimates (normal metric; D =
1.702) for the NBACK (mean discrimination = 0.80; mean difficulty =−1.96) and CPT
(mean discrimination = 0.48; mean difficulty =−1.22). Of note for the NBACK, discrimi-
nation parameters were substantially higher for the targets (mean = 1.35) than for the
foils (mean = 0.53), which was also true for the difficulty parameters (mean for targets
=−1.52; mean for foils =−2.18). Differences for the CPT were similar but subtler
(mean target & foil discrimination = 0.55 & 0.44; mean target & foil difficulty =−1.07
& −1.29). One noticeable difference between the parameter estimates of the NBACK
and CPT is that the former appear to depend on a stimulus’ position in the sequence
(i.e. which stimulus was displayed immediately before) while the latter appear to
depend more on characteristics of the stimulus itself. The stimuli in Table S2 are
“blocked” into sets of 5, such that the first five rows are the same stimulus presented
at successively later (though random) times; for example, items 1, 2, 3, 4, and 5 are
the same stimulus and could be administered, for example, in random positions 3, 10,
55, 56, 81, and 90, respectively. To take an extreme example, items 121 through 125
all have near-zero discrimination parameters, indicating that this specific stimulus is a
poor indicator of the ability to correctly reject the non-target. (Indeed, the stimulus is
a non-letter that looks very much like a letter.) When this stimulus was administered
during the simulations, it left the standard error of measurement essentially unchanged,
meaning it is a “dead weight” item that takes up time but adds nothing.6

Table 2. Number of items necessary to achieve satisfactory levels of criterion validity (relative to full-
form) and short-full correlation.

Criterion Validity

Test & Phase Convergent CGAS SES Psychosis Age Full-Short Correlation

CPT letters 69 (77%) 42 (47%) 55 (61%) 48 (53%) 53 (59%) 41 (46%)
CPT numbers 55 (61%) 40 (44%) 48 (53%) 43 (48%) 39 (43%) 35 (39%)
NBACK 0-back 29 (97%) 28 (93%) 29 (97%) 28 (93%) 25 (83%) 26 (87%)
NBACK 1-back 23 (77%) 27 (90%) 24 (80%) 25 (83%) 18 (60%) 23 (77%)
NBACK 2-back 24 (80%) 24 (80%) 24 (80%) 24 (80%) 23 (77%) 24 (80%)

Note. CGAS = Children’s Global Assessment Scale; SES = socio-economic status; CPT = Continuous Performance Task.
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Table 3 shows the item exposure results using the CAT-simulation method of test
abbreviation. The numbers of items necessary to achieve six levels of precision (from
very high precision to minimum acceptable) are shown for each test and phase.
Taking the fourth row (Max. SEM = 0.45) as an example, the second column gives the
equivalent test-level reliability7 (0.80) followed by (going from left to right) the rec-
ommended lengths of the CPT Numbers phase (can be shortened to 69% of original),
CPT letters phase (76% of original), NBACK 0-back (97%), NBACK 1-back (92%),
and NBACK 2-back (92%). Across the six levels of precision, going from extreme to
minimum acceptable (top to bottom of Table 3), the mean recommended short-form
lengths were 98%, 95%, 90%, 85%, 80%, and 73% of the original test, a relatively linear
decrease. Consistent with the results from the SSIR method reported above, the results
in Table 3 suggest that the CPT can be shortened substantially, whereas the NBACK
cannot. Using “moderate” precision as the cutoff for an acceptable short form, the
suggested test lengths of CPT letters phase, CPT numbers phase, NBACK 0-back,
NBACK 1-back, and NBACK 2-back are 62, 69, 29, 28, and 28, respectively. Taken
together, these results, combined with the SSIR method, suggest that we can create a
CPT that is 57% of its original length and an NBACK that is 87% of its original length.

Discussion

In this study, we compared a method of test abbreviation using correlations with full
forms and validity criteria to a precision-based method using CAT simulation. Results
from the validity-based method were largely consistent with those from the CAT-simu-
lation method using the lowest reliability cutoff (SEM < 0.55). For the CPT, the validity-
based method suggested that the test could be shortened by about half of its original
length for letters and numbers, respectively, while the CAT-simulation method suggested
almost identical percentages. Both offer substantial savings in administration time. For
the NBACK, results were not as consistent, with the CAT-simulation results being
more conservative. For the 0-, 1-, and 2-back, the validity-based method suggested
almost no abbreviation; the CAT-simulation method suggested the same. Both
methods indicate that the time savings are negligible, and if this test is used, it should
be administered in its entirety. Further research is needed to determine the cause of

Table 3. Number of stimuli necessary to reach six levels of measurement precision for the CPT and
NBACK.

Items Needed

Precision CPT NBACK

Max. SEM α Equivalent† Numbers Letters 0-back 1-back 2-back

0.30 0.91 (extreme) 84.4 (94%) 88.8 (99%) 29.6 (99%) 29.6 (99%) 30.0 (100%)
0.35 0.88 (high) 78.4 (87%) 83.7 (93%) 29.4 (98%) 29.0 (97%) 29.6 (99%)
0.40 0.84 71.0 (79%) 76.9 (85%) 29.1 (97%) 28.4 (95%) 28.8 (96%)
0.45 0.80 (moderate) 62.0 (69%) 68.6 (76%) 29.0 (97%) 27.7 (92%) 27.7 (92%)
0.50 0.75 52.1 (58%) 59.4 (66%) 28.9 (96%) 27.1 (90%) 26.5 (88%)
0.55 0.70 (min. acceptable) 41.1 (46%) 49.4 (55%) 28.9 (96%) 25.9 (86%) 24.9 (83%)

Note. CPT = Continuous Performance Task; SEM = standard error of measurement; max = maximum; †standard error of
measurement and internal consistency reliability (here, Cronbach’s α) are related by the equation SEM = SDscores ×
sqrt(1 – α), which can be reduced to SEM = sqrt(1 – α) in the normal IRT metric in which SDscores is assumed to be
1.0 without further information (SD = standard deviation).
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the discrepancy for the NBACK, as it could be related to the fixed order of the task,
difficulty of the task, or other factors.

This study had some notable limitations. First, there are many test types not amenable
to CAT, and we only examined two relatively similar, rapid, signal-detection-like tests. It
is unknown whether applying these methods will be as effective or feasible for other types
of tests not amenable to CAT, such as the trail-making tests (Reitan, 1955), tests that
change answer key logic mid-test (e.g. Penn Conditional Exclusion Test; Kurtz et al.,
2004), or list-learning tests involving free recall (Claparède, 1919). A second limitation
is that the methods presented here do not obviate the need to make subjective decisions
when building a short-form. Any decision to use a specific precision level cutoff (e.g.
SEM < 0.40) or validity criterion cutoff will be at least partly subjective and based on
the specific needs of the study. A third limitation is that the age range used here (8–
21) is a unique period of human development (including puberty). It is possible that
some of the effects, especially the relationships among scores and validity criteria, tend
to be higher or lower for this age group (or a sub-group within this one) compared to
the general population. Indeed, our analyses separating the age groups (Supplementary
Figures S2 and S3) confirmed some of the above. Specifically, for the CPT Letters
portion, the test forms (full versus long) tend to diverge more quickly in the older
than in the younger group, such that application of the present method in a younger
group would suggest the test can be shortened more than if it were done in an older
group. For the NBACK, while there was no systematic difference between the older
and younger groups, the differences became large and unpredictable after ∼10 items
were removed (right sides of panels in Figure S2). We therefore urge researchers to
apply this method in the full age range for which the short-form is intended. Otherwise,
the inevitable (and unmodeled) effects of age could have unintended consequences. A
fourth limitation is that, while the abbreviated test forms used here save considerable
time in aggregate, the time savings on an individual level is negligible (1-2 min). A
fifth limitation is that the assumptions are made throughout that: 1) higher discrimi-
nation is always better, and 2) the trait will always be normally distributed with mean
= 0 and standard deviation = 1. However, violations of #2 are so common in nature as
to need no further explanation, and counterexamples of #1 were suggested and demon-
strated by Chang and Ying (1999) and Hau and Chang (2001). Finally, it is both a poten-
tial limitation and a cautionary note that some tests (especially neurocognitive) are
designed with examinee fatigue in mind; abbreviating the test might change the nature
of what is being measured. For example, one aspect of the original version of the Con-
tinuous Performance Test used here is that it was quite long and therefore measured
some aspect of examinee stamina for sustained attention. If the test was intentionally
designed that way (to measure stamina as well as attention), careful thought needs to
be given to whether it is necessary to maintain the same measurement properties as
the original. If so, abbreviation might not be an option.

In sum, overall results provide some evidence in favor of using dual test-abbreviation
methods for certain tests that are not amenable to traditional CAT, especially if those
tests are rapid and include signal-detection-like properties (i.e. detecting and reacting
to targets versus foils). Here, these novel methods were able to shorten the length of a
continuous performance test by approximately half, while the time savings on an n-
back measure were minimal. Future studies should examine the utility of these
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methods in additional computerized neurocognitive measures given in large studies.
Given the scale of many current genomic and international studies, the total time
savings from creation of short-forms is potentially vast. For example, the Penn Continu-
ous Performance Test used here takes 5.3 min to administer. If we abbreviate it to 3.3 min
(2 min saved, a conservative estimate by the present results), administration to ∼500,000
people (e.g. in the UK Biobank) (Sudlow et al., 2015) would mean ∼16,667 h (1.9 years)
of examinee time saved from abbreviating just one test. This consideration highlights the
tremendous potential for increasing assessment efficiency, which could free up time and
resources for more impactful uses or for gathering data on a broader range of behavioral
domains.

Notes

1. Note that the benefits of CAT depend on how it is applied. One way (variable-length) is to
allow tests to proceed until some precision criterion is satisfied. This ensures that each
examinee has a comparable (and acceptable) level of precision (see Babcock & Weiss,
2009; Paap et al., 2019). An alternative (fixed-length) is to administer a specific number
of items to all examinees, where examinees can finish the test with varying levels of pre-
cision, yet the length of the test is predictable. Importantly, a fixed-length adaptive form
will still usually produce results superior to a fixed-length short-form because the items
administered in the fixed-length CAT will be selected to maximize information. An
obvious problem with variable-length CATs for large-scale studies is that the varying
length makes them difficult to fit in the tight participant schedules (measure after
measure after measure) common in large scale studies.

2. “Desirable” in this case depends on the goals of the test. For example, if the test were
designed to detect cognitive impairment in an elderly population, the desirable range of
difficulty parameters would be toward the low end of the continuum, because the goal is
to distinguish those with versus without impairment (implying low), not with versus
without high-level abilities. Likewise, if there is no specific target population, then the desir-
able range of difficulties would roughly match what one expects in the general population: a
normal curve (most difficulty parameters near the mean, with fewer and fewer as one moves
away from the mean).

3. In both Shanmugan et al. (2016) and Moore et al. (2019), the model described here was used
as an intermediate step in the process of obtaining orthogonal bifactor (Reise et al., 2010)
scores. While the goal in those earlier studies was to obtain orthogonal scores (or a “p”
factor in the case of Moore et al.), the present study does not need orthogonal scores,
and therefore the correlated scores from the “middle step” correlated-traits model were
used here.

4. Note that the idea of judging the “quality” of items based on exposure (frequency of
administration) in CAT simulation is not new, and it is certainly possible that the
methods demonstrated in Reise and Henson (2000) and Choi et al. (2010) would
produce results identical to those seen here. However, Moore et al. (2015) differs from
the above approaches in that the above emphasize administration rank (an item is good
if it is administered early), whereas Moore et al. (2015) emphasize total item adminis-
trations. The two approaches can produce different results if, for example, there is an
item with very high administration frequency that tends to be administered late. This
can happen if several CAT item-administration “chains” converge on the item later in
the administration sequence.

5. Two assumptions here are that, 1) the distribution of the trait is normal (Gaussian), such
that an optimal distribution of difficulties would reflect the high proportion of examinees
around the mean, and 2) each item’s characteristics can be assessed “in a vacuum”, indepen-
dent of administration order or which items it ends up combining with. Accordingly, an
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“optimal” difficulty is one close to the mean, and higher discrimination is always better. In
reality, the “optimal” workings of CAT are more complex, such that this phrase “optimal
combination of discrimination and difficulty” could not be asserted without more qualifica-
tions. For example, it is not necessarily true that higher discrimination parameters are always
better, as this will depend on when the items are administered during the test (Chang &
Ying, 1999). See Chang (2015) for summary.

6. In a typical test/scale revision pipeline (see, e.g., Reise et al., 2000), an item/stimulus with
such poor item qualities would be removed from future versions. For this specific appli-
cation, however, we are treating the test as a fixed program that can be only shortened,
not altered at the source code (stimulus presentation) level. If the task were reprogrammed
from the beginning, it might be advisable to remove the problematic stimuli.

7. Note that Cronbach’s alpha is given here only as additional information. It is not used in the
simulations.
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