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Abstract

Background. Assessment of risks of illnesses has been an important part of medicine for decades.
We now have hundreds of ‘risk calculators’ for illnesses, including brain disorders, and these
calculators are continually improving as more diverse measures are collected on larger samples.
Methods.We first replicated an existing psychosis risk calculator and then used our own sam-
ple to develop a similar calculator for use in recruiting ‘psychosis risk’ enriched community
samples. We assessed 632 participants age 8–21 (52% female; 48% Black) from a community
sample with longitudinal data on neurocognitive, clinical, medical, and environmental
variables. We used this information to predict psychosis spectrum (PS) status in the future.
We selected variables based on lasso, random forest, and statistical inference relief; and
predicted future PS using ridge regression, random forest, and support vector machines.
Results. Cross-validated prediction diagnostics were obtained by building and testing models
in randomly selected sub-samples of the data, resulting in a distribution of the diagnostics; we
report the mean. The strongest predictors of later PS status were the Children’s Global
Assessment Scale; delusions of predicting the future or having one’s thoughts/actions con-
trolled; and the percent married in one’s neighborhood. Random forest followed by ridge
regression was most accurate, with a cross-validated area under the curve (AUC) of 0.67.
Adjustment of the model including only six variables reached an AUC of 0.70.
Conclusions. Results support the potential application of risk calculators for screening and
identification of at-risk community youth in prospective investigations of developmental
trajectories of the PS.

A person who eventually develops a severe psychotic disorder (e.g. schizophrenia) usually shows
signs early in life, years before the disorder is formally diagnosed (Keith & Matthews, 1991;
Yung & McGorry, 1996). Symptoms in the early ‘pre-disorder’ stage—formerly called the
‘prodrome’—allow care providers and researchers to assess the risk of future conversion to a
disorder like schizophrenia (Nelson & McGorry, 2020; Yung et al., 2003). Indeed, the discovery
of the prodrome and even earlier pre-morbid symptoms (Brown, 1963; Mahler, 1952) widened
the view of psychosis from a disorder of early adulthood to a disorder of the lifespan (Friedman
et al., 2001; Powers et al., 2020). This perspective, in turn, has led to substantial research on
signs and symptoms that might be detected before the transition to psychosis (Miller et al.,
1999; Woodberry, Shapiro, Bryant, & Seidman, 2016). A promising potential of measuring
such symptoms is that psychosis risk and transition can be predicted.

Assessing risk – i.e. estimating the probability of an event occurring given some known
information – has been an integral part of medicine’s role in prognosis (Combe, Donkin,
Buchanan, & Mackenzie, 1820). The Framingham study (Dawber, Moore, & Mann, 1957)
and subsequent analyses (Mahmood, Levy, Vasan, & Wang, 2014) showed compellingly
that statistical models can predict the future better than the average clinician. Some successful
contemporary calculators assess risk, for example, of complications from cardiac surgery
(Gupta et al., 2011), complications from pancreatectomy (Parikh et al., 2010), general surgical
complications (Bilimoria et al., 2013), undiagnosed diabetes (Heikes, Eddy, Arondekar, &
Schlessinger, 2008), periodontal disease (Page, Krall, Martin, Mancl, & Garcia, 2002), bone
fracture risk (Leslie & Lix, 2014), and hundreds more. Notably, risk calculators have more
recently included ‘mental’ illnesses like psychosis, the focus of the present study. Cannon
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et al. (2016) developed a calculator for risk of conversion from
clinical high risk (CHR) to frank psychosis within a 2-year win-
dow using time-to-event (Cox) regression. They found that psych-
osis conversion was best predicted by positive psychosis symptoms,
declining social function, and poor verbal learning. This calculator
was later replicated and extended by Carrión et al. (2016), Zhang
et al. (2018) and Osborne and Mittal (2019). Fusar-Poli et al.
(2017, 2019) developed a calculator to forecast the transdiagnostic
risk of developing psychosis in secondary care, where predictors
(demographics and any index diagnosis of non-psychotic mental
disorder) were selected based on a priori knowledge [see
Riecher-Rossler and Studerus (2017), Radua et al. (2018), Adibi,
Sadatsafavi, and Ioannidis, (2020), and Sanfelici, Dwyer,
Antonucci, and Koutsouleris (2020) for reviews].

Importantly, currently available psychosis risk calculators were
developed in individuals who were seeking clinical care because
of psychosis spectrum (PS) symptoms, and thus apply to youth
who are already experiencing some distress and/or impairment.
A complementary approach to risk identification is through
general population or community samples, which aims the ascer-
tainment lens at a broader range of individuals experiencing PS
symptoms (Taylor, Calkins, & Gur, 2020; Wigman et al., 2011).
This approach may allow earlier identification of at-risk youth
and commensurate enhanced opportunities to evaluate varying
developmental trajectories and targeted early interventions.
Among the few prospective studies in this area, several consistent
findings have emerged indicating that persistence and worsening
of PS symptoms are associated with particular symptoms, neuro-
cognitive deficits, and neuroimaging parameters and other biomar-
kers (Calkins et al., 2017; Davies, Sullivan, & Zammit, 2018;
Kalman, Bresnahan, Schulze, & Susser, 2019; Taylor et al., 2020).
The development and application of a community applied psych-
osis risk calculator could greatly facilitate the aims of such endea-
vors, potentially accelerating discoveries and treatment innovations
earlier in the pathway to care than is currently feasible.

Given the moderate success of prior CHR calculators, but the
different ascertainment strategies of CHR and community-based
cohorts, which can have a substantial role in enriching the risk
to psychosis (Fusar-Poli et al., 2016), a critical question is whether
prior calculators are applicable to community samples. The pre-
sent study, therefore, had two goals. First, we aimed to evaluate
the construct validity (Cronbach & Meehl, 1955, pp. 282–283)
of the Cannon et al. (2016) psychosis risk calculator of the
North American Prodrome Longitudinal Study (NAPLS) in the
Philadelphia Neurodevelopmental Cohort (PNC), using variables
as similar as possible to those used in the original study. Second,
we aimed to develop and internally validate a new calculator
designed to predict the risk of PS status in a community cohort
of young people aged 8–21. That is, rather than focus on the tran-
sition to threshold psychosis, which may be the optimal focus for
clinical applications, we focus on the risk of occurrence of PS
symptoms in youth, which has practical scientific purposes such
as evaluating neurodevelopmental biobehavioral trajectories in a
youth sample enriched with potential for transition to psychosis.

Methods

Participants

Participants (n = 632) were recruited for follow-up based on Time 1
PS screening of the PNC (Calkins et al., 2014, 2015; Moore et al.,
2016). PNC participants at Time 1 included ∼10 000 genotyped

youth aged 8–21 years at enrollment (2009–2011), recruited from
pediatric, non-psychiatric services of the Children’s Hospital of
Philadelphia (CHOP) health care network. The youth were in stable
health, proficient in English, and physically and cognitively capable
of participating in a clinical assessment interview and computerized
neurocognitive testing. Participants provided informed consent/
assent and permission to re-contact after receiving a complete
description of the study and the Institutional Review Boards at
Penn and CHOP approved the protocol. As detailed previously
(Calkins et al., 2017), participants who screened either positive
(n = 265) or negative (n = 367) for PS symptoms at Time 1 were
identified for follow-up assessment if they were physically healthy
at Time 1 (nomoderate or severe physical conditions requiringmul-
tiple procedures and monitoring), had completed the neuroimaging
protocol > = 18months previously, and had good quality neuroima-
ging data. We emphasized for follow-up individuals from the PNC
random subsample (N = 1601) who had also received multimodal
neuroimaging at T1 (as detailed in Satterthwaite et al., 2014).
Follow-up intervals ranged from 2 to 80 months (mean months =
42.9, S.D. = 16.5). Table 1 provides the Time 1 demographic charac-
teristics of the sample, as well as rates of common mental disorders.

Measures

Clinical assessment
Details of Time 1 (Calkins et al., 2014, 2015; Moore et al., 2016) and
follow-up (Calkins et al., 2017) assessments have been reported.
Briefly, at Time 1, probands (age 11–21) and collaterals (parent or
legal guardian for probands aged 8–17) were administered a compu-
terized structured interview (GOASSESS). This instrument assessed
psychiatric and psychological treatment history, and lifetime occur-
rence of major domains of psychopathology – includingmood, anx-
iety, behavioral and eating disorders – and suicidal thinking and
behavior (Calkins et al., 2014, 2015). Three screening tools to assess
PS symptoms were embedded within the psychopathology screen.
Positive sub-psychotic symptoms in the past year were assessed
with the 12-item assessor administered PRIME Screen-Revised
(PS-R) (Kobayashi et al., 2008; Miller et al., 2004). Items were self-
rated on a 7-point scale ranging from 0 (‘definitely disagree’) to 6
(‘definitely agree’). Positive psychotic symptoms (lifetime hallucina-
tions and delusions) were assessed using the Kiddie-Schedule for

Table 1. Time 1 sample demographic and clinical information for full sample
(N = 632)

Variable Value

Age, years (mean, S.D.) 14.8 (3.2)

Female 0.52

African American 0.48

Caucasian 0.41

Hispanic 0.06

Parent Ed., mean yrs. (S.D.) 14.0 (2.2)

Major depressive episode 0.15

Generalized anxiety 0.02

Obsessive-compulsive 0.04

Attention deficit and hyperactivity 0.17

Note. Values are proportions unless otherwise specified; yrs = years; S.D. = standard
deviation.
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Affective Disorders and Schizophrenia (K-SADS) (Kaufman et al.,
1997) psychosis screen questions, supplemented with structured
questions to reduce false positives. Negative/disorganized symptoms
were assessed using six embedded assessor rated items from the
Scale of Prodromal Symptoms (SOPS) (McGlashan et al., 2003).

History of exposure to traumatic stressors was tabulated from
the post-traumatic stress disorder section of the GOASSESS, in
which participants were asked about lifetime history of experien-
cing eight categories of events (i.e. natural disasters, witnessed
violence, attacked physically, sexually assaulted/abused, threa-
tened with a weapon, experienced a serious accident, witnessed
serious physical injury/death, observed dead body).

Global function was rated using the Children’s Global
Assessment Scale (Shaffer et al., 1983).

An abbreviated version of the Family Interview forGenetic Studies
(FIGS) (Maxwell, 1996), administered to collaterals (of probands <age
18) and adult probands, screened for presence or absence of a first-
degree family history of major domains of psychopathology, with a
more detailed assessment of possible psychotic disorders following
affirmative responses to psychosis-related screening items. To avoid
the influence of proband status on judgments about psychosis family
history, the presence/absence was coded based on FIGS data con-
tained in a blinded file, without reference to proband status at either
Time 1 or follow-up (Calkins et al., 2017; Taylor et al., 2020).

At follow-up, psychopathology was assessed using a custom
protocol (Calkins et al., 2017) consisting of modules of the
K-SADS and the Structured Interview for Prodromal Syndromes
(SIPS, version 4.0) (McGlashan et al., 2003) administered to pro-
bands (age 11 and up) and collaterals (of probands age 8–17).
Following each evaluation, assessors integrated information from
probands, collaterals, and available medical records to provide com-
bined ratings across symptom domains. Integrated clinical informa-
tion was then summarized in a narrative case history and presented
at a case conference attended by at least two doctoral-level clinicians
with expertise in psychosis and/or child psychopathology. Strict
blinding was maintained such that recruiters, assessors and clini-
cians determining consensus ratings and diagnoses were naive to
Time 1 PS screening status of all participants. To avoid biasing
case assignment or symptom ratings, family history of psychopath-
ology was not disclosed during the case conference. Each SOPS clin-
ical rating ⩾3 based on the SIPS interview underwent consensus
review, and clinical risk status and best estimate final diagnoses for
Axis I disorders were determined. Individuals were classified as
meeting PS criteria if they had either (a) a DSM-IV psychotic dis-
order or mood disorder with psychotic features, or (b) at least one
SOPS positive symptom currently (past 6 months) rated 3–5 or at
least two negative and/or disorganized symptoms rated 3–6. See
Calkins et al. (2017) for detailed training and assessment procedures.

Neurocognitive assessment
Time 1 neurocognition was assessed using the Penn Computerized
Neurocognitive Battery (Penn CNB) (Gur et al., 2001, 2010;Moore,
Reise, Gur, Hakonarson, & Gur, 2015), which comprises 14 tests
grouped into five domains of neurobehavioral function. A full
description of the Penn CNB, including a description of each
individual test, is available in the Supplement.

Environmental exposures
Time 1 environment was assessed using a combination of, (1)
self-reported traumatic experiences (as described above), and (2)
neighborhood-level characteristics obtained by geocoding partici-
pants addresses to census and crime data in the Philadelphia area.

Neighborhood characteristics were measured at the block-group
level and included median family income, percent of residents
who are married, percent of real estate that is vacant, and several
others; see Moore et al. (2016) for further details.

Statistical analyses

Quasi-Replication of Cannon et al. (2016)
The first goal of the present study was to replicate in the PNC the
psychosis risk calculator results presented in Cannon et al. (2016),
but note that a true replication (using the same variables and coef-
ficients as in the published model) was not possible here. Our
approach – testing most of the same variables as in the NAPLS
study after re-estimating the coefficients – is best characterized as
a ‘quasi-replication’ in the terminology of Coiera, Ammenwerth,
Georgiou, and Magrabi (2018).

NAPLS identified the following variables as useful predictors of
conversion from a CHR state to frank psychosis within 2 years: age,
sum of Structured Interview for Psychosis-risk Syndromes (SIPS)
items P1 (Unusual Thought Content) and P2 (Suspiciousness),
the Brief Assessment of Cognition in Schizophrenia (BACS) sym-
bol coding raw score, Hopkins Verbal Learning Test (HVLT),
stressful life events, family history of psychosis, Global Scale of
Functioning-Social (GFS-S) (decline in functioning), and trau-
matic events (>1). In addition to being useful predictors, the vari-
ables identified in the NAPLS study are supported by previous
studies and can be obtained in general clinical settings. To replicate
the findings of Cannon et al. (2016), we first selected variables in
the PNC that most closely match the variables listed above.
Online Supplementary Table S1 shows the NAPLS-2 variables
used, along with their PNC equivalents. We had perfect or near-
perfect matches for Age, Family History, and Traumatic Events,
and only partial matches for SIPS P1 & P2, BACS symbol coding,
HVLT, and GFS-S. No equivalent was found for stressful life
events, though this is partly captured in the traumatic events
count. In addition, the PNC sample in this specific replication ana-
lysis was limited to those who started the study (Time 1) with sub-
threshold PS symptoms (same N = 265 PS positive detailed in the
Participants sub-section), which is different from the data set
(full N = 632) used for the construction of the new calculator
(see below). This was done because the NAPLS calculator was
meant to predict the transition from high-risk to frank psychosis
and did not include low-risk people. Thus, the NAPLS-2 calculator
was designed to detect a frank psychosis outcome in a sample of
people with CHR, whereas the PNC-based calculator was designed
to detect CHR/PS in a sample of non-help-seeking community
participants. The outcome of interest was (binary) transition to
threshold psychosis (N = 26 out of the 265) within 2 years of the
first visit. As in Cannon et al. (2016), a Cox proportional hazards
model (survival analysis) was used. The main metric used for
assessment of prediction accuracy was area under the receiver
operating characteristic (ROC) curve (Hanley & McNeil, 1982).

PNC-based risk calculator
Next, we wished to build a new psychosis risk calculator within
parameters more appropriate to our whole longitudinal sample
(N = 632, which includes the N = 265 CHR persons used above,
plus N = 367 others, most typically developing). Rather than pre-
dicting transition from CHR to threshold psychosis, we aimed to
predict the milder PS status. For these purposes someone who
does the transition to frank psychosis (not the milder ‘psychosis
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spectrum’) would be included as a ‘case’ here – i.e. we wished to
predict transition to PS or frank psychosis.

To construct the PNC-based risk calculator, we combined
three feature-selection methods with three prediction methods,
completely crossed (for nine total) in a single cross-validated
pipeline. Details are given below, but the core procedure involved
splitting the data into testing and training sets, selecting variables
and building the model in the training set, and then testing it in
the testing set. The cross-validated framework was 10-fold, such
that all participants received a predicted value based on variables
selected (and model built) in 90% of the sample not including
him/her. The 10-fold cross-validation was repeated 1000 times.

Selection of variables for the model
We used three different feature-selection algorithms to ensure
multiple variable characteristics were considered in selecting
them – e.g. in addition to main effects (Lasso), does the variable
have a nonlinear relationship with the outcome (random forest),
does the variable interact with other variables (moderation) in deter-
mining the outcome (Relieff and STIR)? For each (90% // 10%) split
of the sample (each of the 10-folds), the algorithms below were run,
giving three different sets of ‘optimal’ features for each split (all
saved for subsequent analyses). The integer number of features
selected was also saved. Brief descriptions of the algorithms follow,
and additional detail is available in the Supplement.

1. Lasso regression. Lasso regression is a type of regularized
regression that assesses a ‘penalty’ (forced downward bias of
coefficients) for both the number of predictors used in the
model and the collinearity among them (Tibshirani, 1996).
Usually, the penalty causes most coefficients to become exactly
zero, retaining a confined set of non-redundant predictors for
prediction (i.e. features with non-zero coefficients are ‘good’).

2. Random forest importance. The random forest algorithm (Liaw &
Wiener, 2002) leaves the realm of conventional linear modeling
and incorporates decision trees. The first step of these decision
trees is to determine which single variable best predicts PS in
the training sample. Once that is determined, the algorithm splits
the sample into those above v. below the mean on the ‘important’
variable. In these split sub-samples, the algorithm then looks for
the most important variable. Those sub-samples are then further
split based on their ‘most important’ variables, etc.

3. Relieff and Statistical Inference Relief (STIR). Relieff is an algo-
rithm designed specifically for feature selection and known
for being especially sensitive to interactions among features
(Le, Urbanowicz, Moore, & McKinney, 2019). Given n cases
and p variables, Relieff first chooses a random case. In
p-dimensional Euclidean space, the algorithm finds the nearest
neighbor that is the same as the random case on the categorical
dependent variable (DV) (a ‘hit’) and the nearest neighbor that
is different from the random case on the DV (a ‘miss’). For any
given variable, if the value of that variable for the randomly
drawn case is closer to the ‘hit’ case than to the ‘miss’ case,
the variable importance goes up; otherwise, it goes down.
STIR adds to the Relieff procedure by calculating p values for
the predictors (not used in the traditional Relieff algorithm).
This allowed us to more confidently make decisions about inclu-
sion of variables without accepting an arbitrary cutoff.

Comparing cross-validated prediction models
With the most important variables selected, the next step in the
pipeline was to estimate a model using one of the three prediction

methods; therefore, a total of nine models were estimated in each
fold, one for each combination of feature-selection and prediction
algorithm. Use of multiple algorithms allowed us to answer, gen-
erally, which prediction pipeline is likely to perform best in a
‘final’ model. The prediction algorithms were as follows:

1. Ridge regression. Like lasso regression, ridge regression is a form
of regularized regression that assesses penalties on the coeffi-
cients and is most often used for cross-validation. A major dif-
ference is that ridge regression does not shrink coefficients to
zero (as does lasso), which was desirable here because the fea-
tures had already been selected. It is well-established that
ridge regression outperforms conventional linear regression in
out-of-sample (i.e. cross-validated) prediction (McNeish, 2015).

2. Random forest. The random forest algorithm is described in
the above section. Here the algorithm was used for prediction,
whereas it had previously been used only for variable selection.

3. Support vector machines (SVMs). SVMs classify cases by find-
ing a hyperplane that separates them (on all variables) with a
maximum distance between the hyperplane and the cases (posi-
tive or negative). To illustrate an SVM consider the 2-variable
case (two continuous predictor variables, X1 and X2) predicting
a variable with two possible states (say, ‘infected’ or ‘not
infected’). Graphing X1 and X2 against each other would yield
a scatterplot where each point on the scatterplot was either
infected or not infected. It would be possible to draw a line
through the cloud of points (scatterplot) that maximally sepa-
rated the infected from the not infected. This line would be
the ‘hyperplane’ separating the points; if we added a third vari-
able (X3), the line would become a plane, and if we added >1
variable (X4, X5, etc.), the plane would become a hyperplane.

Final proposed risk calculator model
The results from the above analyses revealed which combination of
feature-selection and prediction algorithms would likely be best in
practice (i.e. predict most accurately if used as a risk calculator).
A problem with the optimal result (see below) is that it required
far too many variables for a risk calculator meant to be used by
the public. We, therefore. estimated 10-fold cross-validated predic-
tion accuracy using the top 2 variables from the final suggested
model, top 3 variables, top 4, etc., up to the top 10 variables
allowed. As expected, at first the cross-validated area under the
curve (AUC) increased as variables were added, but it eventually
started to decrease with additional variables. The maximum/opti-
mal number of variables was taken as the final model. Once this
number was established (3 variables? 8 variables?), the full sample
was used to maximize estimation accuracy of the coefficients.
Cross-validated prediction accuracy of the model therefore cannot
be obtained until it is used in another, external sample.

R scripts used for all analyses above can be found at https://
www.mooremetrics.com/psy-risk-supplemental-files/.

Results

Quasi-replication of NAPLS risk calculator

Online Supplementary Table S2 shows the results of the CoxPH
model run using the sample of Time 1 PS participants (N = 265
who were on the PS at Time 1, not the full N = 632 who included
typically developing youth). The strongest predictor of conversion
to frank psychosis in the NAPLS calculator is Age (32% increased
odds per age year), followed by PRIME total score (PS-R Total)
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https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0033291720005231
Downloaded from https://www.cambridge.org/core. IP address: 74.109.27.237, on 12 Jan 2021 at 21:49:01, subject to the Cambridge Core terms of use, available at

https://www.mooremetrics.com/psy-risk-supplemental-files/
https://www.mooremetrics.com/psy-risk-supplemental-files/
https://www.mooremetrics.com/psy-risk-supplemental-files/
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0033291720005231
https://www.cambridge.org/core


(4% increased odds per point). Figure 1 shows the ROC curve
(black) corresponding to the model in online Supplementary
Table S2. Within-sample prediction achieves an AUC of 0.71.
To put these results into context, including how well we would
expect them to cross-validate out-of-sample, we implemented
two analyses. First, we ran 2-fold cross-validation on the model
setup from online Supplementary Table S2—i.e. coefficients
were estimated in a random 50% of the sample, and this model
was tested (AUC obtained) using the left-out 50%. This was
repeated so that each person had an out-of-sample prediction,
quality of prediction was assessed using conventional metrics
(AUCs, etc.), and this was repeated 10 000 times to get a distribu-
tion of cross-validated AUCs. The AUCs of the cross-validated
models are shown in green in Fig. 1, and as expected, cross-
validation reduced the AUC from 0.71 to 0.64, the latter below
the conventional cutoff of 0.70.

As a secondary analysis, because we wanted to gauge how
‘impressive’ a within-sample AUC of 0.71 is, we compared the
within-sample results (AUC = 0.71; black function in Fig. 1) to ‘ran-
dom’ within-sample results using permuted labels for Psychosis.
That is, the binary indicator for frank Psychosis was randomly reas-
signed and themodel re-estimated, giving a rough indication of what
level of within-sample prediction accuracy one could expect purely
by chance, given this number of variables distributed in this way
with this specific (tiny) proportion of ‘hits’. The above permutation
of labels was repeated 10 000 times, and the mean AUCwas taken to
be the AUC expected by chance. online Supplementary Figure S1
shows the results of the permutation analysis. The pink ‘cloud’ com-
prises 1000 of the 10 000 ROC curves (limited to 1000 for better vis-
ual) estimated for each permutation, and the black function is the

Fig. 1. Receiver operating characteristic curves for
within-sample (thick) and out-of-sample (thin, gray)
prediction of psychosis conversion.

Fig. 2. Area under the ROC curve for nine combinations of feature-selection and pre-
diction algorithms.

Psychological Medicine 5
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samewithin-sample ROC prediction curve resulting from themodel
in online Supplementary Table S2. Mean AUC for the permuted
labels was 0.60, compared to 0.71 using the correct labels. Of central
importance in this test is whether the 0.71 falls within the range of
AUCs, we would expect by chance, where the range is defined by
the 95% confidence interval. The upper bound of the confidence
interval is 0.69, meaning the within-sample AUC value of 0.71 indi-
cates prediction significantly better than chance.

PNC-based risk calculator

Figure 2 shows a comparison of the nine pipelines tested here, by
AUC. Quality of prediction algorithms was clear, with ridge being
the best (three leftmost bars in Fig. 2), followed by random forest,
followed by SVMs. Quality of selection algorithms was more vari-
able, with each of the three demonstrating best performance,
depending on the algorithm: random forest selection is best for
ridge, lasso selection is best for random forest, and STIR selection
is best for SVMs. The key result is that the best cross-validated
AUC was achieved using random forest selection, followed by
ridge regression for prediction. We also examined the balance
of sensitivity and specificity achieved by the pipelines in Fig. 2,
shown in online Supplementary Figure S2. In all but one pipeline
(RF – >SVM), sensitivity is prioritized over specificity, and this is
especially true for the models using the RF predictor (middle
three sets of bars in online Supplementary Figure S2).

Figure 3 shows the frequency of feature-selection across the
three algorithms (plus the mean), ordered by decreasing apparent
importance overall. The top three most important, on average,
were the C-GAS, PS-R item 2 (‘I think that I might be able to pre-
dict the future’), and PR-R item 3 (something interrupting or con-
trolling thoughts/actions). Regarding agreement among the three
algorithms, the top 10 variables (on average) were in the top 1% of
all three algorithms, suggesting substantial agreement, at least at
the high importance level. Some notable exceptions include, (1)
emotion identification performance was considered extremely
important by STIR and random forest but only moderately so

by lasso, (2) working memory performance was considered
extremely important by STIR and random forest but not import-
ant at all by lasso, and (3) currently, taking psychoactive medica-
tions was considered extremely important by STIR and lasso but
not important at all by random forest. Breaking the top ten vari-
ables down into ‘types’, five are clinical, three are cognitive, and
two (trauma and percent married in neighborhood) are related
to the environment or external experiences. Notably, none of
the demographic characteristics was in the top 10; race was con-
sidered important (almost top 10), and age and sex were consid-
ered only moderately important.

One problem with the optimal results from Table 2 (STIR –
>ridge) is that the average number of variables selected (47.8),
on average, was far too many for a risk calculator meant to be
used by the public. We, therefore, opted to run a secondary

Fig. 3. Frequency of variable selection across random data partitions, by algorithm, in decreasing order of importance.

Table 2. Final psychosis risk calculator using ridge regression and the top six
predictors

Predictor Coef.

Intercept 2.590

Children’s Global Assessment Scale (CGAS) −0.036

SOPS N4 Experience of emotions and self 0.242

PS-R 2: I think that I might be able to predict the future 0.149

PS-R 3: could possibly be something controlling my thoughts
or actions

0.130

PS-R 12: I have been concerned that I might be ‘going crazy’ 0.169

Percent married in neighborhood −1.882

Note. SOPS = Scale of Prodromal Symptoms; PS-R (aka ‘PRIME’) = Prevention through Risk
Identification, Management, and Education Screen-Revised; Coef = coefficient; SCR = screen;
final result will be in log-odds units, which can be converted to probability by
exponentiating (to convert from log-odds to odds) and then using the equation probability
= odds/(odds + 1); p values and standard errors are not given because they are not
meaningful for this type of model (Goeman, Meijer, & Chaturvedi, 2018) due to downwardly
biased coefficients (typical rules of general linear model, where the equation is the best
linear unbiased estimator, do not apply).
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analysis in which we tested the cross-validated prediction per-
formance of increasing numbers of suggested variables. One sens-
ible approach – i.e. to use the importance ranking provided by
STIR – was not possible, because too many variables (21) were
given the highest possible importance rating by STIR (i.e. selected
on all 10 000 runs). To break the 21-way tie, we opted to use the
average importance (black line in Fig. 3) in selecting the sequence
of variables to add. Note that the final model comprised variables
with maximum random forest importance anyway.

Figure 4 shows the cross-validated prediction results using
ridge regression and the ‘top x’ variables according to average
selection frequency in Fig. 3. With only one variable (C-GAS),
the model achieves a CV AUC of almost 0.66. Adding
PRIME_2 increases the AUC to almost 0.68, and adding
PRIME_3 (for three variables total) brings the CV AUC back
down to ∼0.66. Adding three more variables (percent married
in neighborhood, PRIME_12, and SIPS Perception of Self) brings
the CV AUC to its maximum of almost 0.70. The final proposed
risk calculation model therefore comprised C-GAS, PRIME_2,
PRIME_3, percent married in neighborhood, PRIME_12, and
SIPS Perception of Self/Others.

Table 2 shows the coefficients associated with this model. To
facilitate use by future researchers, the coefficients in Table 2 are
in raw native units (e.g. PS-R responses are on their usual 0–6
scale, C-GAS is out of 100, etc.). Increased risk of psychosis is indi-
cated by low C-GAS; residence in a neighborhood where most peo-
ple are unmarried; and endorsement of clinical symptoms related
to predicting the future, having one’s thoughts controlled, concerns
about going crazy, or changes in the experience of self/others.

Discussion

We performed a quasi-replication of a previously developed risk
calculator for the transition from PS status to threshold psychosis,
and then developed a new calculator for prediction of PS-risk sta-
tus in a community sample.

Replication of the Cannon et al. (2016) calculator was success-
ful insofar as the within-sample prognostic performance of the
calculator was comparable across the two studies.
Cross-validation of the results revealed predictive performance
(AUC = 0.64) below what is traditionally considered adequate
(AUC = 0.70), though all results for this replication should be
interpreted with caution. First, there was not an exact match of
variables used in the original calculator (Cannon et al., 2016).
For example, we could include here only a broad index of global
function (C-GAS), which conflates clinical symptoms and multiple
domains of function, whereas NAPLS-2 utilized recent decline in
social function assessed with the Global Function Social Scale,
which differentiates social function from clinical symptoms and
other aspects of functioning (Cornblatt et al., 2012). Second, this
was a highly unbalanced sample with <10% cases (converters),
meaning one could achieve >90% accuracy simply by predicting
that no one will convert. This makes the 74% accuracy of the
Cannon model seem unacceptably low, but this phenomenon in
highly unbalanced samples will confound most available risk calcu-
lators with AUCs <0.80. Also, accuracy is not always the primary
objective – e.g. the accuracy-maximizing prediction (mentioned
above) that no one will convert would be useless in medicine.
Finally, the coefficients in the NAPLS-2 model were re-estimated
in this new sample, making this study only a quasi-replication
focused on construct validity of the calculator. Despite these limita-
tions, our findings appear to support the generalizability of the risk
calculator approach in a broader PS community-based cohort.

Development of a new calculator for risk of future PS status (i.e.
risk of being at high risk) revealed numerous important predictors
of risk and achieved a cross-validated AUC (0.70 rounded up) that
was minimally acceptable by contemporary standards. However,
there is some information leakage (Boehmke & Greenwell, 2020)
caused by the fact that the six variables in the final model were cho-
sen based on importance across multiple algorithms across enough
random cross-validations that information used for feature-
selection ultimately came from the full sample. Therefore, a more

Fig. 4. AUC and balanced accuracy achieved by
increasing numbers of variable.
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conservative estimate of the success of the present risk calculator
would be to use the max number in Fig. 2, which is ∼0.68.
Additionally, a critical feature of the risk calculator presented here
is that, unlike prior risk calculators, although we did perform our
analyses in a community sample enriched for PS symptoms, the
risk calculator was not developed on a clinically help seeking sample,
characterized by distress and treatment seeking. Thus, the predictive
utility of the calculator must be balanced with the potential stigma
and anxiety associated with a risk label (Rüsch et al., 2015; Yang
et al., 2015). Notably, the model prioritized environment (percent
married in neighborhood) over race, suggesting the possibility
that, (1) the actual proportion of people married in a neighborhood
contains information all the way across the spectrum rather than
simply being a proxy for race, and (2) one’s environment is at
least as important as one’s race in determining psychosis risk.

Despite caveats mentioned above, the tool presented here (web
link in Supplement) predicts a broader range of the PS continuum
than in clinical high-risk samples, which is an advantage since
psychosis can originate outside CHR (Lee, Lee, Kim, Choe, &
Kwon, 2018). That is, most risk calculators (including Cannon
et al., 2016) focus on conversion to frank psychosis, meaning
differentiating among people at lower levels of risk (e.g. the differ-
ence between someone who responds to PRIME item 1 with a ‘0’
v. someone who responds with a ‘2’) is not a priority. The calcu-
lator presented here focuses on assessing risk along the full PS
rather than at the moderate-extreme level where one typically
sees conversion to frank psychosis. Prediction of PS status in
this manner could be useful in recruiting for prospective commu-
nity cohorts, where predicting that individuals are likely to experi-
ence persisting or worsening PS symptoms in the future might be
more desirable than predicting likely threshold psychosis in the
same time frame. In particular, the risk calculator presented
here is applicable for use in a younger cohort of individuals
(mean age 15), where conversion to threshold psychosis within
only a few years is relatively rarer than in most CHR samples
who are, on average, in the late adolescence early adult age
range (e.g. Cannon et al., 2016; Osborne & Mittal, 2019; Zhang
et al., 2018). This risk strategy may be useful in several ways.
First, given that persisting subthreshold psychosis symptoms are
associated with increased risk of comorbid psychopathology,
including mood, anxiety, substance and suicidal ideation, as
well as poor global function (see Taylor et al., 2020 for review),
risk prediction can facilitate screening and earlier access to mental
health care. In addition to providing referral for relief for current
symptoms, screening could lead to improved PS symptom mon-
itoring, resilience-building strategies, and, perhaps, prevention
efforts. Second, the approach can facilitate prospective studies
aiming to elucidate and characterize biobehavioral and functional
features of early developmental trajectories of PS symptoms. Such
efforts can potentially facilitate a precision medicine approach by
establishing mechanistic links among cellular-molecular aberra-
tions and PS symptoms in the general population.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291720005231.
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